
Enterprise-scale conversational agents with knowledge graphs, entity
refinement and dynamic conversation flows

Devin Conathan, Joseph Bockhorst, Glenn Fung
Machine Learning Research and Innovation

American Family Insurance
Madison, WI

{dconatha,jbockhor,gfung}@amfam.com

Abstract

A key barrier to the enterprise wide scaling
of conversational virtual agents, beyond the
significant challenges posed by natural lan-
guage understanding, are that the marginal
development and maintenance costs of addi-
tional content areas is high. Here we de-
scribe an approach for development of vir-
tual agents that scales. Our approach dynam-
ically generates conversational flows from a
knowledge graph in a way such that our con-
versational model can be interpreted as an in-
stance of a (dynamic) finite state machine. Im-
portantly, our design supports a synergistic
collaboration between domain experts and IT
professionals using each group’s core compe-
tencies. IT is responsible for designing the
schema of the knowledge graph and imple-
mentation of certain key routines while the
domain experts use their expertise to popu-
late the knowledge graph. We have imple-
mented our approach at an American insur-
ance company using it to deploy an internally-
facing question-answering virtual agent. A
short video overview of our system is available
at https://youtu.be/12CsG_HAMhM

1 Introduction

Enterprises are increasingly looking to use virtual
agents (a.k.a. chatbots) to better serve customers
and to reduce costs. Within customer support cen-
ters, for example, there is optimism virtual agents
will increase efficiency and decrease costs by au-
tomating the fulfillment of simple tasks and pro-
viding answers to common questions while pro-
viding customers clear and consistent answers and
around-the-clock, instantaneous availability.

Chatbots present many interesting academic
challenges because they combine aspects of natu-
ral language understanding, machine learning, lin-
guistics, communication and information science.
Despite these challenges, it is surprisingly easy to-

day to build a chatbot that can perform a few sim-
ple tasks using off-the-shelf tools. However, scal-
ing such approaches has proven to incredibly chal-
lenging if not next to impossible.

The difficulty of enterprise wide scaling of vir-
tual agents is not surprising when one considers
that in essence any chatbot operates by translating
natural language utterances into mini-programs in
some formal language. Thus, even if the trans-
lation problem were solved (the focus of a large
portion of the field of natural language understand-
ing), scaling virtual agents would need thoughtful
software design, development and maintenance in
order to succeed. Moreover, considering that i)
the system language is frequently an implicitly de-
fined domain specific language and that ii) non-
technical subject matter experts are often expected
to be the primary authors of chatbot functionality,
it is no surprise that the challenges of scaling vir-
tual agents are vast.

Our main contribution in this paper is an ap-
proach to virtual agents that scales. We design our
approach with two primary objectives: i) that com-
mon conversational actions, for example obtaining
parameters needed to carry out user intents, be per-
formed for new or updated virtual agents by au-
tomatically generating conversational flows from
an underlying knowledge graph (KG) and ii) that
non-technical subject matter experts be empow-
ered to create and update virtual agents by simply
describing data within their domain of expertise in
the KG.

Throughout we will refer to a hypothetical pizza
ordering bot to demonstrate concepts with simple
examples. At our company, we have applied this
approach to a question answering bot, which is in-
troduced in more detail in Section 2.4.

https://youtu.be/12CsG_HAMhM


2 Background

2.1 Knowledge Graphs, Entities and Types

A knowledge graph is a way of storing informa-
tion that is particularly useful for virtual agents.
Let E be a set of entities and P be a set of prop-
erties. A knowledge graph K ⊂ E × P × E
represents a set of facts; if (e1, p, e2) ∈ K,
then entity e1 has property p equal to e2 (e.g.
(Barack Obama, born in, Honolulu)).
E contains both entity instances and en-

tity types. An entity’s type is expressed
in the graph with a special property type:
(10, type, Number), which says there’s an
entity 10 that’s an instance of the type Number.
E usually contains basic types like String,

Number and Boolean and custom types spe-
cific to a domain (e.g. Pizza). K in-
cludes schema information about types; for in-
stance, (Pizza, diameter, Number) indi-
cates that entities with type Pizza have a prop-
erty diameter that is a Number. K also
includes facts about specific entities, such as
(pizza #123, diameter, 10), which says
that there exists some entity called pizza #123
that has a diameter of 10.

2.2 Intents and Entities

An intent is a standard term in the chatbot do-
main meaning what the user is trying to accom-
plish. For our approach we formalize an intent as
a function that fulfills the user’s need by return-
ing an answer and/or executing some side effect.
For example GET_MENU might be an intent that
queries a pizzeria’s website and returns the menu,
which would be invoked if the user asked “Can I
see the menu?”

Most intents need parameters in order to be ful-
filled. Under our approach intents are designed
such that the types of their parameters are entity
types in the KG. For example the ORDER_PIZZA
intent requires the instance of Pizza (with its size
and toppings specified) that the user would like to
order.

The task of determining the parameters of the
intent, similar to the dialog-state-tracking prob-
lem (Williams et al., 2016), is a central task of vir-
tual agents and is the focus of this paper. Since we
assume intent parameters are entities, we call this
process entity refinement.

2.3 Entity Refinement

Natural language is inherently ambiguous and es-
pecially problematic for virtual agents in domains
with complex content. Often this ambiguity de-
rives from incomplete requests (“I’d like to order
a pizza.”). In this case, an instance of the type
Pizza is necessary to fulfill the intent, but the
user has given no information about it.

We propose an approach for determining an in-
stance of a specific type; that is, refining from the
entity type (Pizza) to a fully-qualified instance
of that entity (a large thin-crust pizza with pep-
peroni and extra cheese).

We consider this problem orthogonal to other
ambiguity problems that arise from conversational
agents, such as intent recognition. Determining
the user’s intent is usually the first step for any
conversational engine, and for this paper we as-
sume that the correct intent has been identified.

2.4 Applications to Many Domains

This entity refinement approach generalizes to
many domains. At our company, we have de-
veloped an insurance agent-facing chatbot for an-
swering common questions about our products.
However, questions like "How do I remove some-
one from a policy?" have a number of possible an-
swers. The answer to this particular question is
different if the policy is an auto or property policy,
or if the person being removed is the policy holder
or not.

Rather than having different intents for each
possible answer (REMOVE_HOLDER_AUTO,
REMOVE_NONHOLDER_AUTO, ...), it is more
efficient and scalable to define one intent
(REMOVE_PERSON) and use a general entity
refinement procedure to determine the needed
entities: what kind of policy (auto or property)
and what kind of person (policy holder or not).

2.5 Current Approaches

The standard approach to entity refinement is pro-
gramming some kind of workflow that is triggered
when the intent is recognized. This approach is
problematic because the control flow and logic of
your chatbot is now intricately linked with the con-
tent. This means that either your subject matter
experts (SMEs) learn and apply software engineer-
ing principles, or your software engineers need to
become subject matter experts.

Indeed, many chatbot vendors develop custom



visual programming interfaces in an attempt to
give SMEs the ability to develop such workflows
on their own. While visual programming offers
some advantages, decreasing the learning curve
for non-programmers by hiding some elements of
syntax most notably, they come with a number of
shortcomings, especially associated with mainte-
nance, that may render their apparent advantages
illusory. This is especially true at enterprise scale.
Standard software engineering practices, for ex-
ample, like version control, debugging, and unit
testing are difficult if not impossible with these
interfaces, and even minor software changes be-
comes a costly burden.

3 Our Approach

Programming languages offers a helpful prism
through which to distinguish our approach to
entity refinement from those described in Sec-
tion 2.5. The visual programming environments
for creating intent workflows that we mentioned
above provide an imperative programming model
for creating workflows. SMEs give instructions
to the chatbot on how to respond to different in-
puts and change state. On the other hand, our ap-
proach uses a declarative paradigm where SMEs
describe what the chatbot is trying to accomplish.
This establishes a convenient separation of duties;
the SMEs are responsible only for describing their
data and the software engineers are responsible for
implementing algorithms that operate on that data.

3.1 A Conversational Data Model
Our conversational model depends on the follow-
ing components:

• A set of entities and entity types E and prop-
erties P

• A knowledge graph K ⊂ E × P × E

• A set of n intents I = {I1, I2, ..., In}

• For each intent Ii a vector Ei of entity types
in E that defines the signature of Ii.

• A set of refining questions qt ∈ Q, one for
each type t ∈ E . Each qt is a function, that in
the common case returns a single question.

Example 3.1. Say a Pizza’s schema specifies a
size, one topping and a kind of crust.1 Then a con-

1To simplify this example, we restrict ourselves to one-
topping pizzas, but this approach does generalize to many-
topping pizzas by introducing the Set type.

versational model for this intent would require the
following refining questions:

• qSize = “What size pizza would you like?”

• qTopping = “Which topping would you
like on your pizza?”

• qCrust = “Would you like thin or thick
crust?”

Our conversational model has three main steps:

1. Identify the user’s intent Ik ∈ I.

2. Identify the parameters ~e of Ik. The types of
the elements of ~e must match Ek.

3. Fulfill the intent by invoking Ik(~e).

This paper focuses on the second step, which
we call entity refinement.

3.2 Entity Refinement Algorithm
Let Ik be the recognized intent. The goal of en-
tity refinement is to acquire parameters for Ik by
identifying a single instance of each entity type in
Ek. With each intent we have a counting function
OIk : Ẽk → N ∪ {∞}, where Ẽk is the set of all
valid partial configurations of Ek. A partial con-
figuration is an entity with potentially unspecified
properties (e.g. a small pizza with its size specified
but not its toppings or crust is a partial configura-
tion of Pizza).

An intent’s counting function tells us how many
candidate parameter vectors are consistent with a
given partial configuration. Each intent may have
it’s own bespoke counting function, but the de-
fault implementation that uses combinatorics and
querying K suffices in most cases. The output of
O can be large or even infinite (such as when an
entity has an unbounded Number property). Our
approach to refinement is to iteratively prompt the
user for the parameter values until only one candi-
date parameter vector remains, at which point we
fulfill the intent.

We use counting functions instead of simply re-
quiring values for all properties of each parame-
ter’s entity type so that we do not unnecessarily
prompt the user. A parameter may be irrelevant
to the intent if some configurations are invalid.
Perhaps the thick crust option is not available for
small Pizzas, and this constraint is encoded in
our graph. Then (small,pepperoni,NULL)
would only match one valid pizza configuration



and we would have no need to refine the crust
property. Such constraints may be encoded in the
KG.

We show the pseudocode of entity refinement
in Algorithm 1. In our model, an entity can al-
ways be uniquely identified by specifying all of its
properties (i.e. a Pizza entity is equivalent to a
(Size,Topping,Crust) triple). Thus, refining
its properties is equivalent to refining the Pizza
entity itself.

The CHOOSE function is important to optimize
because refining entities in different orders can re-
sult in a different number of total questions asked
or a more natural conversation flow. The de-
fault implementation of CHOOSE arbitrarily se-
lects an as yet unknown entity, but more complex
heuristics, for example, using information theory
to guide the selection (Bockhorst et al., 2019), may
be preferred.

Algorithm 1 Pseudocode of our approach

function REFINE(I, ẽ)
I: the intent
ẽ: a partial configuration of entities
if OI(ẽ) = 1 then
return ẽ

else
qt ← CHOOSE(I, ẽ) . choose which

refining question to invoke
et ← ASKUSER(qt)
ẽ← UPDATE(ẽ, et)
return REFINE(I, ẽ)

end if
end function

Example 3.2. Here is a simple example that
demonstrates our algorithm:

User: “I’d like to order a pizza.”

The ORDER_PIZZA intent is triggered

EORDER_PIZZA =< Pizza >,
so an instance of Pizza is needed
OORDER_PIZZA(NULL) > 1 so we need
to refine.

We choose to refine the property size

Bot: “What size pizza would you like?”

User: “Large”

We continue to refine until
OORDER_PIZZA(e) = 1

Bot: “Which topping would you like on your
pizza?”

User: “Pepperoni”

Bot: “Would you like thin or thick crust?”

User: “Thin”

OORDER_PIZZA(e) = 1 and we have a
fully specified instance of a Pizza.

We invoke the side effect associated with
ORDER_PIZZA and respond to the user.

Bot: “Got it. I have ordered your large thin crust
pizza with pepperoni.”

4 In Practice

At our company, we have deployed a insurance
agent-facing chatbot instance using this approach
to answer questions about our products as is in-
troduced in Section 2.4. The chatbot has one in-
tent: ANSWER_QUESTION which takes an in-
stance of a Question as a parameter. Instances
of Questions fall into some subtype, like
CoverageQuestion or RentalQuestion,
each with their own schema. When a user
asks a question, we apply a convolutional neu-
ral network-based sentence classifier (Kim, 2014)
to classify which subtype of Question is being
asked, and then begin the refinement process de-
scribed in Algorithm 1. Our latest release contains
about 370 questions and 100 question subtypes.

5 Conclusions

This paper describes a novel design for conversa-
tional virtual agents that scale. Our design em-
phasizes a separation of duties that empowers both
domain experts and IT professionals to meaning-
fully contribute to development using knowledge
and skills appropriate to their training. Our ap-
proach does not ask subject matter experts to apply
principles from software engineering nor for pro-
grammers to become experts in problem domains.

Our approach includes a conversational model
that dynamically queries a knowledge graph to
generate conversation flows. Like other recent ap-
proaches to virtual agents (Larionov et al., 2018;
Pichl et al., 2018), our approach can be interpreted
as instance of a finite state machine, but whose
states are not explicitly given, but rather are dy-
namically generated from the current state and the
knowledge graph.



References
Joseph Bockhorst, Devin Conathan, and Glenn M.

Fung. 2019. Probabilistic-logic bots for efficient
evaluation of business rules using conversational in-
terfaces. In Proceedings of the Thirty-third Confer-
ence on Innovative Applications of Artificial Intelli-
gence, Jan 27-Feb 1 2019, Honolulu, Hawaii.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. CoRR, abs/1408.5882.

George Larionov, Zachary Kaden, Hima Varsha
Dureddy, Gabriel Bayomi Tinoco Kalejaiye, Mi-
hir Kale, Srividya Pranavi Potharaju, Ankit Parag
Shah, and Alexander I Rudnicky. 2018. Tar-
tan: A retrieval-based socialbot powered by a dy-
namic finite-state machine architecture. CoRR,
abs/1812.01260.

Jan Pichl, Petr Marek, Jakub Konrád, Martin Mat-
ulík, Hoang Long Nguyen, and Jan Sedivý. 2018.
Alquist: The alexa prize socialbot. CoRR,
abs/1804.06705.

Jason Williams, Antoine Raux, and Matthew Hender-
son. 2016. The dialog state tracking challenge se-
ries: A review. Dialogue Discourse.

http://arxiv.org/abs/1812.01260
http://arxiv.org/abs/1812.01260
http://arxiv.org/abs/1812.01260
https://www.microsoft.com/en-us/research/publication/the-dialog-state-tracking-challenge-series-a-review/
https://www.microsoft.com/en-us/research/publication/the-dialog-state-tracking-challenge-series-a-review/

