
Predicting Self-reported Customer Satisfaction
of Interactions with a Corporate Call Center

Joseph Bockhorst, Shi Yu, Luisa Polania, and Glenn Fung

American Family Insurace
Strategic Data & Analytics

Machine Learning unit
6000 American Parkway
Madison, WI USA 53783

Abstract. Timely identification of dissatisfied customers would provide
corporations and other customer serving enterprises the opportunity to
take meaningful interventions. This work describes a fully operational
system we have developed at a large US insurance company for predicting
customer satisfaction following all incoming phone calls at our call center.
To capture call relevant information, we integrate signals from multiple
heterogeneous data sources including: speech-to-text transcriptions of
calls, call metadata (duration, waiting time, etc.), customer profiles and
insurance policy information. Because of its ordinal, subjective, and often
highly-skewed nature, self-reported survey scores presents several mod-
eling challenges. To deal with these issues we introduce a novel modeling
workflow: First, a ranking model is trained on the customer call data fu-
sion. Then, a convolutional fitting function is optimized to map the rank-
ing scores to actual survey satisfaction scores. This approach produces
more accurate predictions than standard regression and classification ap-
proaches that directly fit the survey scores with call data, and can be eas-
ily generalized to other customer satisfaction prediction problems. Source
code and data are available at https://github.com/cyberyu/ecml2017.

1 Introduction

In a competitive customer-driven landscape where businesses are constantly com-
peting to attract and retain customers; customer satisfaction is one of the top
differentiators. While digitization and other forces continue to increase consumer
choice, understanding and improving customer satisfaction are often core ele-
ments of the business strategy of modern companies. It enables service providers
to unveil timely opportunities to take meaningful interventions to improve cus-
tomer experience and to train customer representatives (CR) in an optimal way.

In order to measure the effectiveness of a CR during a phone interaction with
a customer, generally a customer survey is taken shortly after the call takes place.
However, due to survey expense, typically only a small percentage of calls are
measured. When CR performance is calculated from a small sample of surveys
performance scores have high variability and there is potential misrepresentation
of CR performance.

https://github.com/cyberyu/ecml2017


The focus of this work is to describe the design and implementation of a
deployed machine-learning-based system used to automatically predict customer
satisfaction following phone calls. Our discovery and system design process can
be divided into four stages:

1. Extraction, processing and linking of raw data: Raw data is collected
and linked from four primary sources: call logs, historical survey scores, cus-
tomer and policy databases, and call transcription and related content de-
rived from audio recordings.

2. Feature engineering: Call data is processed to create informative features.
3. Model design and creation: In this stage we focus on the design and

creating of the customer satisfaction predictive models.
4. Aggregation of model predictions to the group level: At the last

stage, we aggregate individual model predictions to the group level (by call
queue, by CR, in a given period of time, etc.). We also provide estimated
bounds for the group average predictions.

2 Related Work

Research studies on emotion recognition using human-human real-life corpus ex-
tracted from call center calls are limited. In [15], a system for emotion recognition
in the call center domain, using lexical and paralinguistic cues, is proposed. The
goal was to classify parts of dialogs into three emotional states. Training and
testing was performed on a corpus of 18 hours of real dialogs between agent and
customer, collected in a service of complaints. A similar work [2], also proposes to
classify call center calls between three emotional states, namely, anger, positive
and neutral. The authors used classical descriptors, such as zero crossing rate
and Mel-frequency cepstral coefficients, and support vector machines as the clas-
sifier. They used service complaints and medical emergency conversations from
call centers, and adopted a cross-corpus methodology for the experiments, mean-
ing that they use one corpus as training set and another corpus as test set. They
attained a classification accuracy between 40% to 50% for all the experiments.

Park and Gates [10] developed a method to automatically measure customer
satisfaction by analyzing call transcripts in near real-time. They identified sev-
eral linguistics and prosodic features that are highly correlated with behavioral
aspects of the speakers and built machine learning models that predict the de-
gree of customer satisfaction in a scale from 1 to 5 with an accuracy of 66%.
Sun et al. [13] adopted a different approach, based on fusion techniques, to pre-
dict the user emotional state from dialogs extracted from a Chinese Mobile call
center corpus. They implemented a statistical model fusion to alleviate the data
imbalance problem and combined n-gram features, sentiment word features and
domain-specific words features for classification.

Recently, convolutional neural networks have been used on raw audio signals
to automatically learn meaningful features that lead to successful prediction of
self-reported customer satisfaction from call center conversations in Spanish [12].
This approach starts by pretraining a network on debates from French TV shows



with the goal of detecting salient information in raw speech that correlates with
emotion. Then, the last layers of the network are finetuned with more than 18000
conversations from several call centers. The CNN-based system achieved compa-
rable performance to the systems based on traditional hand-designed features.

There are many machine learning problems, referred to as ordinal ranking
problems, where the goal is to classify patterns using a categorical scale which
shows a natural order between labels, but not a meaningful numeric difference
between them. For example, emotion recognition in the call center domain usu-
ally involves rating based on an ordinal scale. Indeed, psychometric studies show
that human ratings of emotion do not follow an absolute scale [9,8]. Ordinal
ranking is fundamentally different from nominal classification techniques in that
order is relevant and the labels are not treated as independent output categories.
The ordinal ranking problems may not be optimally addressed by the standard
regression either since the absolute difference of output values is nearly mean-
ingless and only their relative order matters [3].

There are several algorithms which specifically benefit from the ordering
information and yield better performance than nominal classification and re-
gression approaches. For example, Herbrich et al. [5] proposed a support vector
machines approach based on comparing training examples in a pairwise man-
ner. A constraint classification approach that works with binary classifiers and
is based on the pairwise comparison framework was proposed by Har-Peled et
al. [4]. Crammer and Singer [1] developed an ordinal ranking algorithm based
on the online perceptron algorithm with multiple thresholds.

Some areas where ordinal ranking problems are found include medical re-
search [11], brain computer interface [17], credit rating [7], facial beauty assess-
ment [16], image classification [14], and more. All these works are examples of
applications of ordinal ranking models, where exploiting ordering information
improves their performance with respect to their nominal counterparts.

3 Overview of the proposed system

Our main goal is to develop a model to predict satisfaction scores for all incoming
customer calls in order to (i) take meaningful timely interventions to improve
customer experience and (ii) obtain a robust understanding on how care center
performance and training can be enhanced, ultimately for our customer’s benefit.

Our company recently adopted a system which automatically transcribes
phone calls to text. The transcriptions generated by this system are key for our
deployed system. The company customer care center monitors customer satisfac-
tion by offering surveys conducted by a third party vendor to 10% of incoming
calls. Each care center CR has around five surveys completed per month, which
is only about 0.5-1% of all assigned calls. There are four topics measured by the
survey: (a) If the customer felt “valued” during the call; (b) If the issue was
resolved; (c) How polite the CR was, and (d) How clearly the CR communi-
cated during the call. Scores range form 1 to 10 (1 lowest, 10 highest) and the



Fig. 1: Overview of the deployed system

four scores are averaged into an additional variable called RSI (Representative
Satisfaction Index). In this paper we focus on predicting the RSI.

Several difficulties, in terms of modeling, are discovered after a quick initial
inspection of the training data:

– The customer satisfaction scores (RSI) are highly biased towards the highest
score (10), while calls with scores lower than 8 are less than 4%. This highly
skewed distribution makes building a predictive model more complex.

– Survey scores are customer responses, thus are subjective, qualitative states
heavily impacted by personal preferences.

– The measurement scale of survey scores is ordinal; one cannot say, for exam-
ple, that a score of 10 indicates double satisfaction as a score of 5. Most, if
not all, standard regression techniques implicitly assume an interval or ratio
scale.

Figure 1 displays an overview of the deployed system. The system workflow
can be summarized by the following steps:

1. After a call ends, a transcript of the call is automatically produced by a
speech-to-text system developed by Voci (vocitec.com).

2. Calls are partitioned into temporal segments and non-text features are en-
gineered. The rationale of temporal segmentation is that certain events are
more relevant depending of when they occur in the call. For example: de-
tecting negative sentiment trends in the first quarter of the call but positive
at the end may lead to a higher satisfaction score than when the opposite is
true.

3. Textual features are constructed and merged with non-text features. The
fused feature vectors are used as input features for the models described in
the next step.
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Fig. 2: Partial entity-relationship data model of input data. Numbers indicate cardi-
nality ratios between entities. Not all attributes are shown.

4. Ranking model scoring. The ranking model is trained by sampling ordered
pairs based on satisfaction scores.

5. Mapping from raking scores to satisfaction scores using an isotonic model.
Individual (per call) satisfaction predictions are generated.

6. Aggregation of calls at the group level are stored in a database. Example
groups include: per CR, per queue and per time period.

7. Aggregations are used for real-time reporting though a monitoring dash-
board.

4 Representation

This section describes the pipeline of extracting features from various types of
input data sources related to a phone call which are passed on to the models.
Available input data sources are call transcriptions, call logs, and other customer
and policy data. Figure 2 displays our input data model.

Calls are transcribed to sequences of non-overlapping utterances, chunks of
semi-continuous speech by a single speaker flanked on either side by either a
change of speaker or a break in speech. Each utterance contains the transcribed
text along with related attributes including the predicted speaker, either cus-
tomer or company representative, start and end times, and predicted sentiment.
Concatenating the text of all utterances gives us the full transcribed text of a
call. In addition to the call transcription, we generate features from the telephony
system logs. Examples of log level attributes are assigned call-center queue, wait-
ing time and transfer indicators. For calls that are linked to specific customers
we use addtional customer and policy data.

4.1 Feature Engineering

Our feature engineering process takes linked input data for a call and produces
a fixed-length feature vector.



Table 1: A temporal segment feature is created for each of the 300 combinations (5 ×
3 × 4 × 5) of component values.

Component Possible Values

Utterance function negSent(), negCount(), duration(), consNeg(), sentScore()
Speaker representative, customer, either
Aggregate function min(), max(), mean(), std()
Temporal range [0.0, 0.25), [0.25, 0.5), [0.5, 0.75), [0.75, 1.0], [0.9, 1.0]

Temporal Segment features Each temporal segment feature represents an
aspect of the call in a certain temporal range, for example, the minimum senti-
ment score of any customer utterance in the last quarter of the call. A temporal
segment feature is defined by i) a numerical utterance function1, ii) a speaker,
iii) an aggregate function and, iv) a temporal range (see Table 1).

Temporal Segment Text-features The text of each transcribed customer
call can also be viewed as a linear sequence of temporal elements (words) thus
can be decomposed into temporal textual segmentations. In fact, each customer
call consists of several natural temporal segmentations, which usually starts with
greetings, then customer personal information authentication, next followed by
customer’s narrations of problems or requests, and then responses and resolu-
tions provided by the representative, and finishes by ending courtesies of both
parties. To predict customer satisfaction, we assume that late segmentations of
a call (i.e., problem explanations, resolutions) are more informative than early
parts (i.e., greetings, authentication), therefore we create separate textual models
by decomposing the transcribed text of a call into different temporal segments.

We denote D as the corpus of transcribed text of all calls, where di ∈ D,
i = 1...N is a document of transcribed text of the i-th call. Each di is composed
of a sequence of words wi,j , j = 1...Mi where Mi is the total number of words
in di. And we further decompose all the words in a document into four sub-
documents qi1, qi2, qi3, qi4, where

qi1 = {wi,1, ..., wi,s1},
qi2 = {wi,s1+1, ..., wi,s2},
qi3 = {wi,s2+1, ..., wi,s3},
qi4 = {wi,s3+1, ..., wi,Mi}.

Since each call has different lengths, and we haven’t applied any method to
automatically segment a call according to the content, we simply set s1, s2, s3

respectively to the rounded integers of Mi

4 ,
2Mi

4 , 3Mi

4 , thus gives us four even

1
negSent() is an indicator that is 1 if the utterance sentiment label is Negative, negCount() is

the number of Negative or Mostly Negative sentiment phrases in the utterance, duration() is the
length of the utterance in seconds, consNeg() is an indicator that is 1 if the current and previous
utterance have negative sentiment, and sentScore() maps utterance sentiment labels (Negative, Mostly
Negative, Neutral, Mostly Positive, Positive) to numerical scores (-1, -0.5, 0, 0.5, 1).



temporal segments, where each segment contains words appeared in a quarter
part, from beginning to end, of a call and we call them quarter documents.

Analogously, using the same s1, s2, s3 chosen before, we define four sets of
tail documents

ti1 = {wi,1, ..., wi,Mi},
ti2 = {ws1+1,1, ..., wi,Mi},
ti3 = {ws2+1,1, ..., wi,Mi},
ti4 = {ws3+1,1, ..., wi,Mi},

as segmented documents of various lengths. Notice that ti1 is equivalent to di,
and ti2, ti3, ti4 are respectively the remaining 75%, 50%, 25% part of a call.

Thus, we obtain eight corpora of call text (four quarter documents and four
tail documents) and each corpus represents a temporally segmented snapshot
of the textual content. Next, we construct standard TF-IDF profiles on each
individual corpus, where a row represents a call, and benchmark the best corpora
using a held-out training and validation set. We find that the corpus composed
by ti3, represented by 5000 TFIDF weights, gives the best performance and we
select that for modeling.

Other features Additional features are created from telephony logs, such as
duration of call, queue, in-queue waiting time, and policy count information
such as the number of auto policies, number of property policies, etc. held by
the customer’s household. Our system has a total of 5,340 natural features, and
following one-hot-encoding of categorical features the final model ready dataset
contains 5,501 features.

5 Models

Here we describe our approach to learning a predictive model of ordinal satis-
faction ratings, such as RSI. The modeling task is to learn a function f(x) = ŷ
mapping feature vector x to predicted RSI ŷ such that on average the difference
between the predicted score and actual score y is small. Our approach involves
two models: a linear ranking model r(x) that maps examples to rank scores and
a non-decreasing, non-linear model s(r̂) mapping rank scores to RSI. We form
f() through composition: f(x) = s(r(x)). We term this approach RS+IR for
“rank score + isotonic regression”.

Unlike standard linear and non-linear regression methods that directly model
y, the RS+IR approach is consistent with the ordinal scale of the satisfaction
score. A second advantage of RS+IR is that since the rank score model is learned
from pairs of examples (see below), a larger pool of training examples are avail-
able and the class labels of the training set can be balanced, which is especially
important for data sets like those considered here that are strongly skewed to-
wards the high end of the satisfaction scale.



Rank score model We learn a model to rank examples by RSI using the
pairwise transform [6]. The pairwise transform induces a rank score function r(x)
by learning a linear binary classifier from an auxiliary training set of examples
(u, v) that are formed from pairs of examples (xi, yi), (xj, yj) in the original
ordinal training set that have different satisfaction scores2

The features of the auxiliary examples are the component-wise difference
between the original examples, uij = xi−xj. The binary class value vij indicates
whether or not example i has a higher satisfaction than example j: vij is +1 if
yi > yj and -1 if yi < yj . The linear binary classifier r(u), which is learned
from the auxiliary training set to predict which of two examples has a higher
satisfaction score, is subsequently used as a rank score function r(x). That r() can
be used as a ranking function follows from its linearity r(xi−xj) = r(xi)−r(xj)
and by noticing that r(xi) > r(xj) is consistent with the prediction that yi is
larger than yj .

Rank score to satisfaction The second sub-model s(r) is one-dimensional,
non-decreasing function mapping rank scores to satisfaction scores. After learn-
ing the rank score model r() we calculate the rank score of all examples in the
original training set, order examples by their rank scores and smooth the re-
sulting sequence of satisfaction scores. We then fit an isotonic regression model
using training examples sampled uniformly from the smoothed function.

6 Results

In this section we describe the results of experiments conducted on a data set of
8,726 incoming phone calls from between March 23, 2015 and Dec 29, 2015 for
which we have customer satisfaction survey results. We randomly selected 75%
(6,108) for the training set and the remainder served as our test set.

6.1 Individual Predictions

To assess the value of our ”rank score + isotonic regression” (RS+IR) approach
to predicting phone call representative satisfaction index (RSI) scores we com-
pared it with three standard regression methods (ridge regression, Lasso and
random forest regression) and one classification method, linear support vector
machine3. Ridge regression and Lasso are both penalized linear regression meth-
ods, but use different loss functions: L2 for ridge and L1 for lasso. Random forest
regression is a non-linear approach that trains different ensembles of least-squares
linear models for non-overlapping partitions of the input space. We use cross-
validation on the training set to set hyperparameters (α for ridge and lasso,
max depth and min samples per split for random forest, and C for SVM).

2
All the auxiliary examples may not be needed. We have found that while there are over 10

million auxiliary examples that can be formed from our training set, the rank score model is well
converged when trained with 10,000 examples. We experimented with various techniques for sampling
the auxiliary examples (biased for large RSI difference, small RSI difference, etc), and found that
simple uniform sampling works best.

3
All comparison models trained using the scikit-learn Python package.



Pe. Sp. MAE

Ridge 0.300 0.231 0.811
Lasso 0.303 0.227 0.815
Random forest 0.149 0.150 0.835
Rank Score 0.255 0.239 *
RS+IR 0.312 0.239 0.784
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Fig. 3: (Left) Regression results (Pe:Pearson correlation, Sp:Spearman correlation,
MAE: mean absolute error). (Right) classification results

Figure 3(left) shows test set results. The RS+IR model outperforms the
other models in terms of Pearson correlation, Spearman correlation and mean
absolute error (MAE). Also, RS+IR has better Pearson correlation than the
rank score alone, showing the value of the non-linear mapping from rank score
to prediction. If actions are taken in response to model predictions, for example
reaching out to potentially dissatisfied customers, when predicted RSI falls below
a given threshold T classification models are more appropriate than regression.
The right panel shows the area under an ROC curve as T varies for our approach
and linear SVM. Even though we trained a different SVM model for each value
of T and only a single RS+IR model, the AUC of the RS+RI model dominates
the SVM over the whole range of T , especially for smaller thresholds.

6.2 Group Predictions
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Fig. 4: (a) Dashed lines indicate 95% confidence band for randomly selected groups.
Points are observed group errors of the topics groups. (b) Quantile/quantile plot of
group errors for the topics groups.



Since users of the productionalized system view reports on mean predicted
satisfaction scores for various collections of calls, for example by department,
call-center queue, and hour-of-day, we have investigated our system’s accuracy
for call groups. We use two kinds of groupings: random and by topic. We formed
random groups of a given size by sampling calls with replacement from the test
set. For the topic groups we used hand-crafted text-based predicates, which were
created by another business unit for tagging calls related to various products and
services and aspects of the customer journey. Each topic predicate is a Boolean
function that takes a single sentence as input. A call belongs to a topic T if T (s)
is true for any sentence s in the call. Thus, a given call may belong to zero, one
or many topics. There are a total of 107 topics groups with group sizes ranging
from 1 to 1,560.

We define the group error to be the difference between the mean of the
predicted scores for all calls in the group and the mean of the actual satisfaction
scores. We form random groups with between 10 and 1,000 calls and for each
group size we formed 5,000 replicate random groups. The dashed blue lines in
Figure 4(a) show 95% confidence bands for the group error of the random groups.
That is, for a given group size the group error of 95% of groups of that size in
our simulation fell between the bands. We can see from this figure that group
error decreases with group size.
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Fig. 5: (a) Mean predicted RSI vs. mean satisfaction RSI for the topics groups. Bub-
ble area is proportional to group size. Group sizes range from 50 to 1,560. (b) Mean
predicted RSI for the topics groups with 95% confidence intervals.

We use the bands of Figure 4(a) to determine tolerance levels for deciding
when to raise alarms due to differences between predicted and actual satisfaction
scores. The points represent the errors of the topics groups. The errors for 45
of the 48 topics groups fall between the 95% bands providing evidence that
random groups and natural topic groups have similar error profiles even though
the natural groups have mean predicted scores with much larger deviation than
random groups. Figure 4(b) shows quantile/quantile for the group error of all



107 topics groups (including those with fewer than 50 calls) using the random
groups of similar size to compute the observed percentile. As the points lie close
to the ideal diagonal line, we conclude that the error profiles random groups and
topics group are similar.

Figure 5(a) show the predicted and actual mean satisfaction for the topics
groups. The area of the bubble is proportional to the number of calls in the
group, which ranges from a minimum of 50 to a maximum of 1,560. There is
a general agreement (pearson correlation = 0.73) between the predicted and
actual group means. And in general, as with the random groups, larger groups
have smaller within group errors.

7 Conclusions and lessons learned

This paper presents an efficient and accurate method for predicting self-reported
satisfaction scores of customer phone calls. Our approach has been implemented
into a production system that is currently predicting caller satisfaction of ap-
proximately 30,000 incoming calls each business day and generating frequent
reports read by call-center mangers and decision makers in our company.

We described several techniques that we suspect will generalize to related
tasks. (i) Rather than applying regression models directly on the ordinal data,
we use a linear ranking sub-model along with a non-linear isotonic regression
sub-model for predicting satisfaction. We presented empirical evaluation that
shows this approach yields more accurate satisfaction predictions than stan-
dard regression models. (2) Temporally segmented features constructed from
call meta-information and transcribed text are shown to be useful to capture
informative signals relevant to customer satisfaction. (3) The average satisfac-
tion prediction for groups of calls, instead of by only individual calls, agrees very
strongly with actual satisfaction scores, especially for large groups. (4) We pro-
vided methods for determining system tolerance levels based on the deviation
between predicted and actual group predictions that we use to verify that the
production system is performing as expected.
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