
Practical applications of metric space magnitude and weighting
vectors

Eric Bunch, Daniel Dickinson, Jeffry Kline, Glenn Fung

American Family Insurance
Madison, WI 53783

{ebunch, ddickins, jklin1, gfung}@amfam.com

Abstract
Metric space magnitude, an active subject of re-
search in algebraic topology, originally arose in
the context of biology, where it was used to rep-
resent the effective number of distinct species in
an environment. In a more general setting, the
magnitude of a metric space is a real number that
aims to quantify the effective number of distinct
points in the space. The contribution of each point
to a metric space’s global magnitude, which is en-
coded by the weighting vector, captures much of
the underlying geometry of the original metric
space.

Surprisingly, when the metric space is Euclidean,
the weighting vector also serves as an effective
tool for boundary detection. This allows the
weighting vector to serve as the foundation of
novel algorithms for classic machine learning
tasks such as classification, outlier detection and
active learning. We demonstrate, using exper-
iments and comparisons on classic benchmark
datasets, the promise of the proposed magnitude
and weighting vector-based approaches.

1. Introduction
Magnitude is a scalar quantity that has meaning for many dif-
ferent kinds of data, and as with other scalar quantities such
as rank, diameter, and measure, it has wide applicability,
an intuitive interpretation and a solid theoretical foundation.
Magnitude has been discovered, and rediscovered multiple
times in both practical and theoretical contexts. In this pa-
per, our goal is to apply recent developments drawn from
magnitude theory to machine learning, and to empirically
demonstrate characteristics of magnitude that, while implic-
itly described by abstract theoretical results, have not, to
our knowledge, been explicitly stated before, nor have they
been leveraged for practical purpose.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 1. A visualization of two weighting vectors. The set in
the top figure is supported within four disjoint components, and
they live in R2. The set in the bottom figure is supported on an
embedding of Möbius strip, and it lives in R3. In both images, the
weight of each point is represented using color and point size.

Informally, magnitude aims to quantify the effective number
of points in a space. Our aim is more subtle: we wish to
identify which points are considered “effective” and “impor-
tant.” We do this using the weighting vector. The weighting
vector appears naturally in the definition of magnitude, and
we find that the weighting vector, under appropriate con-
ditions, serves as an effective boundary detector. It is this

1

behavior that makes the weighting vector especially well
suited for machine learning tasks.

1.1. Background, notation and examples

We now define magnitude and the weighting vector, we
present several canonical examples, and we state several
central theorems of the field. While our focus is largely
on subsets of Rn, we note that the concept magnitude and
weighting vector can be defined for far more general types
of sets.

Definition 1. Let X be a finite metric space with metric d.
Denote the number of points in X by |X|. The similarity
matrix of X is defined to be ζXpi, jq :“ expp´dpxi, xjqq
for 1 ď i, j ď |X|. Whenever the inverse of ζX exists, we
define the weighting vector of X to be

wX :“ ζ´1
X 1,

where 1 is the |X| ˆ 1 column vector of all ones. The
magnitude of X is defined to be the quantity

MagpXq :“ 1
TwX “ 1

T ζ´1
X 1.

That is, MagpXq is the sum of all the entries of the weight-
ing vector wX .

Example. When X is a finite subset of Euclidean space,
ζX is a symmetric positive definite matrix [Theorem 2.5.3,
(Leinster, 2013)]. In particular, ζ´1

X is guaranteed to exist.
Hence, the weighting vector and magnitude exist for finite
subsets of Rn.

Example. Given an undirected, unweighted graph G, one
can define a metric space whose points are given by the
vertices of G, and whose metric is taken to be the length
of the shortest path between two vertices. The weighting
vector of this metric space is not guaranteed to exist.

Definition 2. For an arbitrary subset X Ď Rn, the magni-
tude of X is defined as

MagpXq “ suptMagpY q | Y is a finite subset of Xu.

Example. In 1 dimension, and for t ą 0, one has that
Magpr0, tsq “ 1 ` t{2. This was shown by Leinster in
(Leinster, 2013). The magnitude of the ball with radius r
in R2n`1 is a rational function of r, and this was recently
demonstrated by Barceló and Carbery (Barceló & Carbery,
2018).

For a finite metric space pX, dq, and any t P r0,8s, we can
define a new metric space ptX, tdq in the following way.
The points of tX are the same as those of X , and the metric
td is d scaled by t: tdpx, yq :“ t ¨ dpx, yq. The magnitude
function of X is the map t ÞÑ MagptXq, and it is well-
defined whenever ζtX is invertible. Although the inverse
of ζtX may not be defined in general, it has been shown in

[Proposition 2.2.6 (Leinster, 2013)] that for finite subsets of
Rn, the magnitude function is analytic on p0,8q. We also
have the following:

Theorem 3 (Proposition 2.2.6 (Leinster, 2013)). For X Ă

Rn finite, limtÑ8MagptXq “ |X|.

The above proposition is one of the reasons underlying
the informal interpretation of magnitude as quantifying the
effective number of points in a space. The following very
recent theorem gives a connection between the magnitude
of X Ă Rn and the n-volume of X .

Theorem 4 (Theorem 1 (Barceló & Carbery, 2018)). For
X Ă Rn nonempty and compact, we have

lim
tÑ0`

MagptXq “ 1, and

lim
tÑ8

MagptXq

tn
“

VolpXq

n! VolpBnq
,

where Bn Ă Rn is the unit ball.

1.2. Properties of the weighting vector

The weighting vector plays a central role in the applications
that are discussed below, but it is not obvious by inspec-
tion of its definition what useful information the individual
entries of the weighting vector carries. To provide some
intuition about this vector, we now highlight its key features.
Our present aim is to convey a qualitative sense of things,
so our focus is on numerical examples and basic facts. Note
that the ability of the weighting vector to perform boundary
detection is more than conjecture: it may be completely
explained using harmonic analysis (Folland, 1999; Meckes,
2015). But for reasons of space and scope, we limit our
focus.

Let X Ă Rn be a finite set and recall that the weighting
vector of X Ă Rn is defined as wX :“ ζ´1

X 1. This vec-
tor is related to the magnitude of X through MagpXq “
1
1ζ´1
X 1 “ 1

1wX . Note that while X Ă Rn, the vector
wX Ă R|X|, i.e., the dimension of the weighting vector is a
function of the size of X , and not of the dimension n. Also
note that the entries of wX may be indexed in a canonical
way by x P X . We call wXpxq, the weight of x.

Since all operations involved in evaluating wX are contin-
uous, the weighting vector of a small perturbation of X
will approximate the weighting vector of X itself. More
precisely, let Xε :“ tx` εηx : x P X, }ηx} ď 1u. Then for
all x P X , one has limεÑ0 wXεpx` εηxq “ wXpxq. Since
the similarity matrix ζX is positive definite, its inverse exists
and is also positive definite. Thus, 11ζ´1

X 1 “ 1
1wX ą 0.

Although the average value of the entries of wX is guaran-
teed to be positive, it may happen that wXpxq ă 0 holds
for some x P X . It is currently unknown what, if any,
significance to ascribe to the sign of wXpxq.

Let f : Rn Ñ Rm be an affine isometry, i.e., fpxq “
Qx ` q for some Q P Rmˆn and q P Rm, and f satisfies
}z ´ w} “ }fpzq ´ fpwq} for all z, w P Rn. Since f is an
isometry, the similarity matrices of X and fpXq agree (i.e.,
ζX “ ζfpXq), and as a result, wXpxq “ wfpXqpfpxqq. By
the Mazur-Ulam theorem, all surjective isometries between
normed spaces are necessarily affine. Thus, we have that
the weighting vector is invariant under transformation by
any surjective isometry. More concretely, in Figure 1, the
weightings that are displayed are independent of the location
and the orientation of the sets.

When t ą 0 is large, the scaled space tX has the prop-
erty that all points in it are far from each other. Thus,
one has limtÑ8 ζtX “ limtÑ8 ζ

´1
tX “ I . By Theorem 3,

the magnitude function satisfies limtÑ8MagptXq “ |X|.
Combining these observations, we find that for all x P X ,
limtÑ8 wtXptxq “ 1. The closely-related concept of a
scattered space appears in prior work (Definition 2.1.2, (Le-
inster, 2013)), where under conditions far more general
than considered here, it is shown that scattered spaces have
well-defined magnitudes, and hence, weighting vectors.

Conversely, when t ą 0 is small, each entry of the similarity
matrix ζtX is close to 1. In particular, the limiting matrix
is the rank-1 matrix 111, which does not have an inverse.
However, by Theorem 4, one has limtÑ0` 1

1wtXpxq “ 1.
Empirically, when t ą 0 is very small, we find that the
weights of “interior points” of the global space of X are
small, while the “extreme” points of X—especially points
that live nearest the convex hull of X—are significantly
larger.

Finally, we consider weighting vectors of X Ă Rn that is
neither too scattered nor especially concentrated about the
origin. As one example, let X Ă Rn be a regular convex
polytope. By a symmetry argument, for all vertices x, y P X
one has wXpxq “ wXpyq. Thus, modulo a normalizing
constant, the weighting vector is completely specified. Next,
consider Figure 1, which displays weightings of two sets that
do not have any special symmetry: X0 Ă R2 which consists
of points supported in the union of four disjoint sets, and
X1 Ă R3 which lives on an embedding of the Möbius strip.
Both sets were generated using a uniform random sampling
process. In these renderings, every x P Xi has its weight,
wXipxq, conveyed both by the marker size and by color,
where i “ 0, 1. It is clear from these figures that points
within the relative interior of some component have low
weight, while points in close proximity to some boundary
tend to have larger weight. It is this empirical observation
that leads to the utility of weightings in applications.

We close this section by observing that magnitude, and by
extension, weighting vectors, are well-defined on a very
general class of sets, including sets that are not necessarily
subsets of Rn. It is therefore possible to extend the no-

tion that connects a point’s weight and its proximity to a
boundary to any space that has a weighting vector.

1.3. Related work, paper structure

An early reference to the concept of magnitude occurs
in (Solow & Polasky, 1994), where it was introduced as
a way to measure biological diversity. However, the math-
ematical motivations were not divulged in this paper. Two
decades later, Leinster (Leinster, 2013) placed the mag-
nitude of a metric space within a formal mathematical
framework using category theory. This highly abstract per-
spective lead to the current era, where it is being explored
through many different lenses, including functional anal-
ysis (Meckes, 2013; Barceló & Carbery, 2018), harmonic
analysis (Meckes, 2015) and homology theory (Leinster &
Shulman, 2017), where it has been shown to be equivalent
to an Euler characteristic. Much of the prior emphasis has
been on a set’s magnitude, and this focus has overshadowed
the potential utility of the weighting vector.

Recently, topological data analysis has emerged as an ap-
proach to the problem of describing the shape of high-
dimensional data (Edelsbrunner et al., 2002; Scopigno et al.,
2004; Zomorodian & Carlsson, 2004). One particularly
popular topic within this field is persistent homology (Edels-
brunner et al., 2002). Recent efforts have realized magnitude
as the Euler characteristic of a homology theory, called mag-
nitude homology (Leinster & Shulman, 2017). It has also
been shown that there is a direct relationship between mag-
nitude homology and persistent homology (Otter, 2018);
however, the current paper is the first known application of
magnitude directly to machine learning.

We now describe the remaining sections of this paper. Sec-
tion 2 presents practical techniques for working with, and
computing, the magnitude and weighting vectors of a dis-
crete set. Section 3 introduces three algorithms that leverage
the weighting vector in some essential way. The algorithms
perform classification, active learning, and outlier detection.
Section 4 presents results. We end with concluding remarks
in Section 5.

2. Useful properties of magnitude
In this section, we offer some techniques that are useful
when working with weighting vectors. We discuss how
the computation of the weighting vector may be effectively
computed by breaking the computation into smaller pieces
and “gluing” the results together.

2.1. Inclusion-Exclusion for Weight and Magnitude

In this section we investigate how to calculate the weighting
vector for a set Z “ X Y Y that is the union of two sets.
Here X,Y, and Z are all finite subsets of Rn. To approach

this, first we investigate the case when X and Y are disjoint.
Then we will look at the case when Y Ă X , and show how
to calculate either wX or wY when one knows the other.
Finally we will arrive at a corrected version of the inclusion-
exclusion principle for magnitude, as well as the weighting
vector.

Before proceeding, we recall the definition of the Schur
complement.

Definition 5. Let M :“

„

A B
C D

be the block matrix

where the matricesA,B,C,D are of dimensions nˆn, nˆ
m,mˆ n, and mˆm respectively. If D is invertible, then
the Schur complement of D in M is the nˆ n matrix

M{D “ A´BD´1C.

Similarly, if A is invertible, then the Schur complement of
A in M is the mˆm matrix

M{A “ D ´ CA´1B.

Let H ‰ Y Ă X Ă Rn be finite sets. Without loss of
generality, we can index the points of X such that the first
|Y | of them correspond to those points in Y . Then we can
see that ζX can be written as a block matrix

ζX “

„

ζY ζY,Ȳ
ζT
Y,Ȳ

ζȲ

, (1)

where Ȳ “ XzY , and ζY,Ȳ denotes the submatrix of ζX
formed by taking the rows corresponding to Y and columns
corresponding to Ȳ . We can now rewrite the formula
ζXw “ 1 using equation 1 as the system of equations

ζY wX
ˇ

ˇ

Y
` ζY,Ȳ wX

ˇ

ˇ

Ȳ
“ 1Y

ζTY,Ȳ wX
ˇ

ˇ

Y
` ζȲ wX

ˇ

ˇ

Ȳ
“ 1Ȳ ,

where 1Y and 1Ȳ are respectively the |Y | ˆ 1 and
ˇ

ˇȲ
ˇ

ˇ ˆ

1 column vectors of all ones. Since both ζY and ζȲ are
invertible, we can form both of the Schur complements
ζX{ζY and ζX{ζȲ . With these in hand, we can write

wX
ˇ

ˇ

Y
“ pζX{ζȲ q

´1p1Y ´ ζY,Ȳ wȲ q (2)

wX
ˇ

ˇ

Ȳ
“ pζX{ζY q

´1p1Ȳ ´ ζ
T
Y,Ȳ wY q, (3)

where wY and wȲ are the weight vectors for Y and Ȳ
respectively, and wX

ˇ

ˇ

Y
is the weight vector of X , restricted

to those indices corresponding to Y . Thus if we know wY
and wȲ , equations 2 and 3 give a way to compute wX .

Next, for finite sets Y Ă X Ă Rn we wish to calculate
either the weight vector wX or wY given the other.

Definition 6. For a block matrix M “

„

A B
C D

,

with A invertible, define

ρMA “

„

A´1BpM{Aq´1CA´1 ´A´1BpM{Aq´1

´pM{Aq´1CA´1 pM{Aq´1

.

Now recall that for a block matrix M as in Definition 6, we
have that

M´1 “

„

A´1 0
0 0

` ρMA. (4)

Definition 7. For Y Ď X Ă Rn finite sets, assume ζX is
in block matrix format as in Equation 1. Define the matrix

ρXY “ ρζXζY

where ρXY is taken to be the zero matrix when Y “ X , and
ρXY is taken to be ζX when Y “ H.

Lemma 8. For finite sets Y Ă X Ă Rn, let PXY be a
permutation matrix such that

PXY ζXPXY “

„

ζY ζY Ȳ
ζT
Y Ȳ

ζȲ .

Then we have

wX “ PXY

„

wY
0

` PXY ρXY 1, and

MagpXq “ MagpY q ` 1
T ρXY 1.

Proof. This follows by setting M “ PXY ζXPXY , employ-
ing Equation 4, and multiplying on the right by 1.

We can now calculate the weight vector of X Y Y where X
and Y are not necessarily disjoint. This can be viewed as a
corrected inclusion-exclusion principle for weight vectors
as well as magnitude.

Theorem 9. For finite sets X,Y Ă Rn, set Z “ X Y Y .
Then we have

wZ “ PZX

ˆ„

wX
0

` ρZX1

˙

` PZY

ˆ„

wY
0

` ρZY 1

˙

´ PZXXY

ˆ„

wXXY
0

´ ρZXXY 1

˙

, and

MagpZq “ MagpXq `MagpY q ´MagpX X Y q

` 1
T ρZX1` 1

T ρZY 1´ 1
T ρZXXY 1.

Proof. This follows by applying Lemma 8 to each subset
considered, e.g.

wZ “ PZX

„

wX
0

` PZXρZX1.

2.2. Numerical Considerations

In the setting where we have finite sets Y Ă X Ă Rn, and
we have calculatedwY , we can calculatewX without having
to invert the entire matrix ζX using Corollary 8. Since

wX “

„

wY
0

` ρXY 1,

we only need to invert the matrices ζY –which we are as-
suming we have already done–and ζX{ζY , which is an
|XzY | ˆ |XzY | matrix. Then all the matrix products must
be performed in the block matrix formulation of ρXY . In
particular, for the case when we are adding a single point to
the set Y , ζX{ζY is a scalar, and the products needed to form
ρXY are matrix-vector products. This will be used in the
sequel to perform more efficient inference of the machine
learning classifier.

3. Algorithms
In this section we give details on how one may use weighting
vectors and magnitude for a number of typical machine
learning tasks.

3.1. Magnitude as a classifier

In this section, we develop an algorithm that uses metric
space magnitude for a machine learning classification task.
In a classification task, we are given a set X of m training
examples in Rn, xi P X Ă Rn, i P t1, 2, ...,mu. Each
xi has an associated label, lpxiq P L, which is an element
of a finite set of possible labels, |L| “ k ă 8. Given
an unlabeled new point, x1 P Rn, we seek to assign it an
associated label lpx1q P L.

Classification is fundamentally a task of finding or defin-
ing boundaries, thus because the weight vector can serve
as a boundary detector, it is a natural fit for the task. In a
classification task, we are working with finite sets of points
X , so the term “boundary” is not well-defined in the math-
ematical sense. This prompts the following convention: A
point xi P X Ă Rn with |X| ă 8 is in the interior of X
if its weight value is sufficiently small (where “sufficient”
is context-specific). Two points regarding our convention
are worth mentioning. First, for convex sets, Definition 2
ensures that our convention matches with intuition on finite
subsets that are sampled sufficiently densely, as the points
with small weight all lie near the interior. Second, we can’t

distinguish between a point near the boundary of a set and
one on the exterior of a set, as both will have relatively high
weight. However, as discussed below, using our convention
of interior points will be sufficient for use in a classification
setting.

The weight of a point, and therefore our notion of interior
points of a finite set captures global information, as it de-
pends on all other points in the set. By changing other points
in the set X , but leaving xi fixed, it’s weight wi changes;
the difference in the weight of a point relative to changes in
the set is the key part of the classification algorithm.

Let L “ tL1, L2, ..., Lku be the set of labels, and Xi “

tx P X | lpxq “ Liu. If x1 is an unlabeled point, the
logic proceeds as follows. For each label Li, compute w1i,
the weight of x1 in the set tx1u Y Xi. If weight vectors
and inverse matrices for each Xi are computed in advance
and cached, by the discussion in 2.2, each w1i only requires
matrix multiplication of order |Xi| and inverting a 1 ˆ 1
matrix. Intuitively, if w1i has a low value, it likely is an
interior point of Xi and therefore lpx1q “ Li is appropriate.
However, ifw1i has a high value, it is likely not on the interior
of Xi, so another label is more appropriate. Figure 2 shows
an example.

If the classes are well-balanced and have similar underlying
distributions, using the original metric space for each class
is appropriate as the values of the w1i will be similarly scaled
and directly comparable. When the classes are imbalanced
or have different underlying distributions, that assumption
may not be appropriate, as the values of w1i will not neces-
sarily be comparable. We overcome this potential limitation
by introducing a parameter ti for each Li that is used to
scale distances when calculating w1i, that is we perform all
operations related to Li in the metric space ptiX, tidq. Op-
timal ti can be tuned during training for example using grid
search and cross-validation. For simplicity and readability,
we omit t from the basic version in algorithm 1.

We can further ensure consistency between the w1i for differ-
ent i by introducing a function SCALEi : pR,R|Xi|q Ñ R,
which serves to normalize w1i relative to weights of other
points with label Li. Taking wij to be the weight of xj P Xi,
some examples of possible functions are absolute value,
SCALEipw1i, tw

i
j | xj P Xiuq “ |w1i|, and percentile

SCALEipw1i, tw
i
j | xj P Xiuq “

|twij |w
i
jă“w

1
iu|

|Xi|
.

We select a class label using a function DECIDE which
operates on the w1i after they have been scaled using
SCALEi. Letting Sipw1iq denote SCALEipw1i, tw

i
j |

xj P Xiuq, an example of DECIDE is argmax,
SCALEpS1pw

1
1q,S2pw

1
2q, ...,Skpw

1
kqq “ i where Sipw1iq ą

Sjpw1jq for all j ‰ i By allowing DECIDE to accept one
additional threshold parameter, however, the algorithm can
account for previously unseen classes as follows. If all w1i

are above the threshold parameter, it is likely the point is
far from any of the labeled points, and thus from an unseen
class, so it is assigned NULL. Otherwise, apply the decision
function as described above. Note that for simplicity and
readability, we omit the threshold parameter from the basic
version presented in algorithm 1.

Figure 2. Upper left: Training data X , with L0 “ ´ and L1 “ `.
Upper right: XYx1, with a star denoting x1. Lower left: tx1

uYX0,
with w1

0 “ 0.517, and the sizes of markers indicate weight. Lower
right: tx1

u Y X1, with w1
1 “ 0.026, and the sizes of markers

indicate weight.

Algorithm 1 Classification via weighting vector
input Data set X , L “ tL1, L2, ..., Lku labels, function

DECIDE : Rk
Ñ t1, 2, ..., ku, function SCALEi :

pR,R|Xi|
q Ñ R for each i P t1, 2, ..., ku

input unlabeled point x1

p = []
for i P t1, 2, ..., ku do
Y “ tx1

u YXi

w1
i “ wY px

1
q

w “ SCALEipw
1
i,WXiq

p.append(w)
end for
let j “ DECIDEppq

output Lj

3.2. Magnitude for active learning

Figure 3. Magnitude for active learning example. A is weight of
whole data set. B is weight of each class separately.

Next, we will describe how we can use magnitude and the
weight vector to define a query strategy for an active learning
algorithm. As stated in (Settles, 2009), “The key idea behind
active learning is that a machine learning algorithm can

achieve greater accuracy with fewer training labels if it is
allowed to choose the data from which it learns.”

Approaches that minimize the number of human feedback
needed to train machine learning models have sparked re-
newed interested due to the cost of labeling and the the
fact that recent deep-learning-based approaches need handle
large amounts of training data to achieve optimal perfor-
mance. Let L (the labeled dataset) and U the (unlabeled
dataset) be two subsets of the available pool of training data
X , with X “ U Y L and U X L “ H. An iteration of
the algorithm will pick some points in U to be labeled by
an oracle (transferring them to L). The current model will
be then updated using the new updated dataset L and its
corresponding labels.

For simplicity we will state the algorithm for a binary clas-
sification problem i.e. when L “ tL0, L1u, however it can
be trivially extended to a multi-class problem.

The intuition behind the algorithm is simple: at each iter-
ation i, we assign every training data point to one of the
sets X̃0 or X̃1 according to its predicted label by the current
classifier fi. We will calculate the corresponding weight
vectors wX̃0

and wX̃1
. Then, we choose to label (submit to

an oracle for labeling) the point with the minimum value
(interior point) and the with the maximum value (likely to
be in the boundary) for both sets X̃0 and X̃1. By choosing
this way we are aiming to: (a) reinforce, validate and re-
fine high confidence classifier information (labels) acquired
in prior iterations (exploitation) and (b) to acquire labels
in the predicted class boundaries where our classifier con-
fidence is potentially lower (exploration). The proposed
active learning algorithm is stated below.

Algorithm 2 Active learning via weighting vector
input Data set X ,

L “ H; U “ X
initialize L ; U “ X ´ L; with it’s corresponding YL
f “ train_classifierpL,YL)
while (not converged) or (labeling budget not reached) do
X̃i “ tx P X | fpxq “ iu for i “ 0, 1.
calculate weighting vectors wX̃i

Qmin,i “ argmin
U

ˇ

ˇwX̃i

ˇ

ˇ for i “ 0, 1

Qmax,i “ argmax
U

ˇ

ˇwX̃i

ˇ

ˇ for i “ 0, 1

YQ=query_labels(Qmin,0,Qmax,0,Qmin,1,Qmax,1)
L “ LY tQmin,0,Qmax,0,Qmin,1,Qmax,1u

YL “ YL Y YQ
U “ X ´ L;
f “ train_classifierpL,YL)

end while
output f

Where
ˇ

ˇwX̃i

ˇ

ˇ denotes all components of the vector wX̃i in
absolute value. We present some numerical experiments in
Section 4.

3.3. Magnitude for Outlier Detection

In this section we give an algorithm that uses the values of
the weight vector of a set to find outliers in a dataset. As we
have seen, the weight vector serves as a boundary detector
for a data set. But if the boundary is not well defined because
there are outlier data points, we can use the weight to mark
points as outliers. Suppose we have a data set X Ă Rn,
and wish to determine if a new point x P Rn should be
considered an outlier with respect to X . By looking at the
value γXx :“ 1

T ρXYtxuX1 “ MagpX Y txuq´MagpXq,
we can see if adding x increased the magnitude substantially,
thereby greatly extending the "border" of X . By Lemma
3.1.3 in (Leinster, 2013) we have that 0 ď γXx.

Care must be taken, however; both the points on the bound-
ary of the data set, and the outlier points will have high
weight relative to the interior of the data set. Thus we col-
lect all the points in X whose weight is below a threshold
(here we take median weight plus 1.5 times standard devia-
tion), and denote this subset as Xin, the inliers. The points
of X not in Xin we call outlier candidates, and denote as
Xout. Next, for each x P Xout with γXx less than a user-
defined threshold 0 ď τ , we move from Xout to Xin. Then
we have our final decomposition of the data set into inliers
and outliers: X “ Xin YXout. We record this algorithm
in Algorithm 3.

In Figure 4 we have the results of this algorithm using syn-
thetic data. Inlier data was generated from two Gaussian
distributions, and outliers were drawn from a uniform distri-
bution.

Remark. It can be noted that the NULL class prediction
algorithm described in Section 3.1 can be viewed as a type
of online outlier detection algorithm. If the same paradigm
is used when there is a single class, we obtain an outlier
detection algorithm that is trained on data that only contains
inliers.

Algorithm 3 Outlier detection via magnitude
input dataset X , threshold τ
Xin “ tx P X | abspwXpxqq ă medianpwXq `
1.5stdpwXqu
Xout “ XzXin

for x P Xout do
if γXx ă τ then
Xin Ð x

end if
end for

Figure 4. Outlier detection for synthetic data, τ “ 0.2

4. Results
4.1. Classification Experiments

To test the classification algorithm, we ran a set of ten ex-
periments across 5 classic benchmark datasets from the
UCI repository, a synthetic two-dimensional checkerboard
dataset, as well as the scikit-learn digit and iris datasets, and
multiple classifiers. Each experiment consisted of using a
random stratified splitting method to partition the the data
set into a training set consisting of 70% of the data, and a
testing set consisting of the remaining 30%. The classifiers
were trained without fine-tuning any parameters; the basic
algorithm presented in 1 with ARGMAX for DECIDE and
absolute value for SCALEi, and the defaults in scikit-learn
(Pedregosa et al., 2011) for all parameters in the other algo-
rithms. Table 4.1 records the average and standard deviation
of the accuracy on the testing dataset for all classifiers.

Remark. Our model performed quite similarly to k-nearest
neighbors in our experiments, which is quite remarkable
given the dramatic differences between the algorithms. We
also note the promise it implies: our initial attempt at using
the boundary detection properties of the weighting vector in
a machine learning setting have matched the performance of
a well-established and widely-used model. We believe this
will be improved upon and expanded as techniques using
the weighting vector are adopted more widely.

To demonstrate the NULL class label capabilities, we trained
the magnitude classifier on examples of six and nine from
the scikit-learn digits dataset, then predicted on images of
ones, sixes, and nines. The confusion matrix with a NULL
class threshold of 1´ 10´11 is shown in table 4.1.

4.2. Active learning Experiments

In order to assess the effectiveness of the weighting-vector-
based active learning (AL) algorithm proposed in Section
3.2, we compared Algorithm 3.2 to the simplest but highly
effective and most commonly used query AL framework:
uncertainty sampling (Lewis & Gale, 1994). In this frame-
work, the AL algorithm queries the instances for which it

Table 1.
dataset K-Neighbors Logistic Reg. Rand. Forest SVM Weight

2-d checkerboard 0.92 ˘ 0.02 0.51 ˘ 0.04 0.94 ˘ 0.01 0.62 ˘ 0.04 0.92 ˘ 0.01
clevedata.mat 0.82 ˘ 0.04 0.85 ˘ 0.02 0.82 ˘ 0.03 0.84 ˘ 0.03 0.84 ˘ 0.03
dimdata.mat 0.94 ˘ 0.01 0.95 ˘ 0.01 0.95 ˘ 0.00 0.96 ˘ 0.00 0.93 ˘ 0.01
housingdata.mat 0.87 ˘ 0.02 0.87 ˘ 0.03 0.87 ˘ 0.02 0.87 ˘ 0.03 0.87 ˘ 0.02
ionodata.mat 0.84 ˘ 0.05 0.89 ˘ 0.02 0.94 ˘ 0.02 0.95 ˘ 0.02 0.81 ˘ 0.08
iris 0.94 ˘ 0.04 0.87 ˘ 0.05 0.94 ˘ 0.04 0.96 ˘ 0.03 0.85 ˘ 0.13
sklearn digits 0.97 ˘ 0.01 0.96 ˘ 0.01 0.95 ˘ 0.01 0.98 ˘ 0.01 0.97 ˘ 0.00
ticdata.mat 0.85 ˘ 0.02 0.69 ˘ 0.03 0.93 ˘ 0.02 0.88 ˘ 0.02 0.78 ˘ 0.03

Figure 5. Active learning results comparing the weighting vector query strategy vs the uncertainty sampling strategy. Average over 100
runs

null 6 9

null 53 0 1
6 1 53 0
9 1 0 54

Table 2. Confusion matrix for classifier with NULL class.

is least certain about how to label (i.e. for many algorithms
pplabel}xq « 0.5 or where the decision function is close to
0). For simplicity we used a kernelized Ridge regression
model (Cristianini & Shawe-Taylor, 2000) (also refer as to
LS-SVM (Suykens & Vandewalle, 1999) or proximal SVM
(Fung & Mangasarian, 2001)). Laplacian kernels were used
both as magnitude to calculate the weighting vector and
as classification kernel (kpx, yq “ expp´γ}x ´ y}1q with
γ “ 0.1. At each iteration of Algorithm 3.2 the classifier
learned after obtained labels from the oracle has the form
fpxq “ Kpx,Lq1w ´ w0, where w0 is the bias term.

We performed experiments on five classic benchmark
datasets from the UCI repository taking 67% of the data
as training pool and the remaining 33% as a testing set.

Note that the weighing-vector-inspired algorithm chooses 4
points per iterations so we picked the four more uncertain
points for the uncertainty sampling algorithm to be fair.

Figure 4.2 shows average performance curves over 100 runs.
The performance from the weighting vector algorithm seems
to perform better in four out of the five datasets and slightly
worse on the Galaxy dim. and Checkerboard datasets.

5. Conclusions
We apply the concepts of metric space magnitude and
weighting vector to a wide variety of classical machine
learning tasks. We introduce practical algorithms that are
suited to these tasks, and we demonstrate performance that
is competitive with, and in many cases, surpasses the perfor-
mance of benchmark methods. Additionally, we introduce
the notion that the weighting vector can accurately identify
boundaries on scattered data that lives in a Euclidean space.

Prior work in the field of metric space magnitude has gen-
erally been theoretical and focused on the magnitude func-
tional itself, and the properties of the weighting vector have
been overshadowed. Practical aspects of metric space mag-

nitude and the weighting vector is still an emergent field.
Since magnitude and the weighting vector are well-defined
for an extraordinarily wide class of sets, we believe that
one natural aim of future work would be to develop vector
weighting and magnitude into a robust, unifying foundation
for the analysis of familiar, but also highly unusual, spaces.

References
Barceló, J. and Carbery, A. On the magnitudes of compact

sets in Euclidean spaces. American Journal of Mathe-
matics, 140(2):449–494, 2018. doi: 10.1353/ajm.2018.
0011. URL https://muse.jhu.edu/article/
688522.

Cristianini, N. and Shawe-Taylor, J. An Introduction to Sup-
port Vector Machines and Other Kernel-based Learning
Methods. Cambridge University Press, 2000.

Edelsbrunner, H., Letscher, D., and Zomorodian, A. Topo-
logical persistence and simplification. Discrete & Com-
putational Geometry, 28(4):511–533, Nov 2002. ISSN
1432-0444. doi: 10.1007/s00454-002-2885-2.

Folland, G. Real analysis: modern techniques and their
applications. Pure and applied mathematics. Wiley, 1999.
ISBN 9780471317166.

Fung, G. and Mangasarian, O. L. Proximal support vector
machine classifiers. In KDD ’01, 2001.

Leinster, T. The magnitude of metric spaces. Documenta
Mathematica, 18:857–905, 2013.

Leinster, T. and Shulman, M. Magnitude homology of
enriched categories and metric spaces, 2017. URL
https://arxiv.org/abs/1711.00802.

Lewis, D. D. and Gale, W. A. A sequential algorithm
for training text classifiers. CoRR, abs/cmp-lg/9407020,
1994.

Meckes, M. Positive definite metric spaces. Positivity, 17:
733–757, Sept 2013. doi: 10.1007/s11117-012-0202-8.

Meckes, M. W. Magnitude, diversity, capacities, and dimen-
sions of metric spaces. Potential Analysis, 42(2):549–572,
2015.

Otter, N. Magnitude meets persistence. Homology the-
ories for filtered simplicial sets, 2018. URL https:
//arxiv.org/abs/1807.01540.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine Learning in Python . Journal of
Machine Learning Research, 12:2825–2830, 2011.

Scopigno, R., Zorin, D., Carlsson, G., Zomorodian, A.,
Collins, A., and Guibas, L. Persistence barcodes for
shapes, 2004.

Settles, B. Active learning literature survey. Technical
report, University of Wisconsin-Madison Department of
Computer Sciences, 2009.

Solow, A. R. and Polasky, S. Measuring biological diversity.
Environmental and Ecological Statistics, 1(2):95–103,
Jun 1994. ISSN 1573-3009. doi: 10.1007/BF02426650.

Suykens, J. and Vandewalle, J. Least squares support vector
machine classifiers. Neural Processing Letters, 9:293–
300, 06 1999.

Zomorodian, A. and Carlsson, G. Computing persis-
tent homology. In Proceedings of the Twentieth An-
nual Symposium on Computational Geometry, SCG ’04,
pp. 347–356, New York, NY, USA, 2004. Association
for Computing Machinery. ISBN 1581138857. doi:
10.1145/997817.997870.

https://muse.jhu.edu/article/688522
https://muse.jhu.edu/article/688522
https://arxiv.org/abs/1711.00802
https://arxiv.org/abs/1807.01540
https://arxiv.org/abs/1807.01540

