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Abstract—Recommender systems have become extremely im-
portant to various types of industries where customer interaction
and feedback is paramount to the success of the business.
For companies that face changes that arise with ever-growing
markets, providing product recommendations to new and existing
customers is a challenge. Furthermore, it is important to have an
algorithm which is descriptive, scalable, agnostic to missing fea-
tures, and robust in providing these recommendations. Directed
graphical models meet all these demands; however, if the dimen-
sionality of the features is high, structure learning and inference
can become computationally prohibitive. In this work, we propose
an algorithm with some novel aspects to learn the structure of
a graphical model (e.g. Bayesian network), which considerably
speeds up both training (from days to minutes in some cases) and
inference run-times with respect to standard Bayesian structure
learning approaches, while achieving similar accuracy. We also
show that this approach produces more accurate predictions than
a state-of-the-art matrix factorization algorithm in the absence
of complete evidence on several insurance-related datasets.

I. MOTIVATION

In the insurance industry, the motivation for creating a
recommendation system stems from the urge to provide value
for customers. By connecting to customers through accurate
and relevant recommendations, customer trust and loyalty
could be increased.

The aim is to predict relevant insurance products for our
customers based on what other similar people with similar
portfolios have. We want to be able to do this for both our
current & prospective customer base. To aid our agents in
providing the best value to our customers, we created this
recommendation engine to generate recommendations based
on customer portfolio data, to give agents a good starting point
for discussions with their customers. Currently the human
interaction aspect is relied on for the best possible experience
for the customer. Future versions of the system will allow for
direct customer interaction & offers.

The first iteration of our system [1] that was previously
deployed had a limited scope: we focused on 3 of our 19
sales states and each state got 2 models: one for auto, &
one for property. Since each model was relatively small, we
used a commercial Bayesian network tool to create and score
the models: BayesiaLab [2]. Due to the success of our first
wave of models, we decided to expand recommendations to
all 19 of our sales states in this second iteration of the system.
For simplicity, we also decided to create general models that

cover all the 19 states at once. Due to the vast amounts
of data that had to be considered when creating models at
the national level, structure learning and inference became
computationally infeasible with BayesiaLab. This motivated us
to design a much more scalable approach to Bayesian network
(BN) structure learning that better fits our task.

Bayesian Networks belong to a class of algorithms known
as probabilistic graphical models. For such models, a directed
graph expresses the conditional independence assumptions
between random variables, which are represented as nodes,
using the (lack of) arcs between nodes. They provide a
compact representation of joint probability distributions. The
advantage of BNs is that they can encode variable relationships
that can be learned from data. Furthermore, the complex
relationships embedded in the data can be visualized using
the graphical representation of the models. From the machine
learning perspective, BNs belong to the class of generative
models, because they learn the joint probability distribution of
features and target variables together.

Training a BN usually involves two steps. First, we learn
the underlying graph structure. This can be done by learning it
from the available training data or by using domain knowledge
about the problem at hand [3, 4]. The former is used in this
paper. The second step involves learning the conditional prob-
ability tables (CPTs) that represent the conditional distribution
for each variable given its parents.

Learning the graph structure is usually the hardest part in
this process. In general, this problem is NP-hard [5]. Even
learning the structure using a greedy approach could result in
a dense graph. The corresponding CPTs, whose size grows
exponentially with the number of parents, explode in size,
potentially making inference or even simply realizing the CPT
in memory intractable.

Taking these two things into consideration, we propose
an algorithm which learns a simpler structure in a way that
both structure learning and inference are scalable and can be
performed much faster. Our algorithm reduces the structure
learning time from days (5) to minutes (20) for most of our
models. Furthermore, in terms of accuracy this approach is on
par with that of state-of-the-art recommendation algorithms.

There are several characteristics of our problem that made
the BN approach a good fit in our case:



• Most of our features, derived from policy and customer data,
have discrete values.

• Traditional recommendation systems deal with many prod-
ucts (e.g. Netflix, Amazon, etc.), but in our case we had a
limited number of products to work with.

• We had a number of missing values in our dataset. BNs can
predict in the presence of very little evidence if necessary.
This gives us the best of both worlds - generative and
discriminative.

• We could optimize the structure to predict the targets we
chose, and only consider the top features relevant to each
target as its supporting evidence.

II. RELATED WORK

Some documented instances of recommender systems for
the insurance domain include [6], [7], and [8], and for the
financial industry include [9]. None of these systems have
the same breadth of product/policy knowledge being tackled
by our system (auto, property, life, and umbrella policies),
and they have limited scope for usage (targeted to call center
reps with limited knowledge of products [6], or web usage
for a single product [8]). Reference [7] suggests that their
system is based on a standard user-user collaborative filtering
approach, which would not handle missing values as well
as our approach does. Reference [9] has a high degree of
interaction required to create recommendations for a customer,
whereas ours is meant to run as a batch process on a fairly
regular schedule without user input to create recommendations
for humans to act on during their business day without delay
(HILDA).

Low Rank Matrix Factorization (LRMF) models are widely
used algorithms for recommender systems. We experimented
with the Boosted Inductive Matrix Completion algorithms
(BIMC) as described in [10]. We have applied these meth-
ods on our dataset, which is described in section IV, even
though these methods take “side information” (i.e. non-target
features/variables) into account in an inductive fashion to deal
with the cold-start problem, they don’t have the mechanism to
take other “label information” (i.e. target features/variables)
into account without having seen the example during training
(transduction). Hence they perform poorly on the new unseen
cases with missing “side information”.

A paper that compared some collaborative filtering algo-
rithms [11] showed that for a wide range of conditions,
Bayesian networks outperformed other methods. Even though
[11] is from 20 years ago and many advancements have been
made to matrix factorization approaches, the paper highlights
that depending on the nature of the data and the application,
BNs have smaller memory requirements & allow for faster
predictions, but require a learning phase that can take a
significant amount of time (multiple hours, depending on the
amount of data and features). The approach detailed in this
paper is geared to reducing the burden of the learning phase
as well as the inference phase of using BNs.

As explained earlier, learning a BN usually starts with
learning the graph structure from the data, if it’s not already

Fig. 1. Schema of our deployed recommender system (APEX is the agent
system/interface)

known, and there has been a great deal of research done in
finding the optimal Bayesian structure from data. But even
under a wide variety of assumptions, this problem is known to
be NP-hard [5, 12]. The algorithm in [13] maximizes the BDeu
scoring function and finds the optimal Bayesian network, but
is only feasible if the number of nodes/variables is in the tens
(less than a hundred). In our insurance-inspired settings the
number of variables usually exceeds that.

Exact structure learning algorithms like [14] and [15] have
exponential run-times. The algorithm presented in [16] tries
to find the posterior probabilities of structural features, and
finding the optimal Bayesian structure is again restricted to
a small number of variables (less than 50) & is not scalable
beyond that. [17] tries a greedy approach to find the optimal
Bayesian network, but if the data set is large, the run-time is
exponential. The algorithm in [18], which finds the maximum
spanning tree over a given set of variables, is a very fast
approximation of the structure with the maximum in-degree
of 1, but it gives very poor results during inference. Given
that our dataset has close to 100 variables to start with, none
of these algorithms can be used as-is.

III. METHODOLOGY

The following sections will describe our deployed system,
and the algorithm we chose to use for creating the recommen-
dations.

A. Deployed System Overview

Figure 1 shows the conceptual schema of our deployed
recommender system. Our system consists of the following
modules, executed in-order:

1) The recommendation module: This is the core recom-
mender model, it takes the input customer data (portfolio,
policy, etc.) and generates predictions for likely recommen-
dations.

2) The optimization module: This takes as an input a set of
possible recommendations from the recommendation mod-
ule and prioritizes recommendations based on an optimiza-
tion criteria predefined by the business. Possible choices
for optimization strategies are: customer retention, customer
satisfaction, & customer lifetime value (prediction or es-
timation of the net profit attributed to the entire future
relationship with a customer).



3) The business rule module: This module filters recom-
mendations according to business rules to ensure that the
final recommendations are appropriate for the customer. For
example, it filters out a recommendation if a similar one has
been presented to the customer recently (this is based on the
system’s business requirement).

The final goal is to have the system deployed as a service that
can be used in different company applications: as a tool to
assist agents (our primary focus in this paper), as a customer
facing recommendation engine, and as a tool to assist our
marketing department, among others.

The remaining paper focuses on the algorithm we built for
the recommendation module (labeled as “1” in Figure 1).

B. Model Scope & Data

For this second phase of the project, we wanted to expand
the original scope of 3 sales states to all 19 sales states.
And we also wanted to accommodate both our “Classic” and
“Advance” line of products. But we kept our original decision
to create separate auto and property models, due to the fact that
the model features are line specific. This led to the creation
of 4 models: 2 for auto, and 2 for property (i.e. each had a
Classic and Advance version). All recommendations are made
at the policy level.

The purpose of the system for this phase is to suggest
new product offers (for both cross-sell and up-sell) for every
existing customer. “Cross-sell” means a model recommends a
different product line (e.g. auto model recommends property,
life, or umbrella coverage), vs. “up-sell” which means a model
recommends an additional coverage or endorsement in the
same product line (e.g. property model recommends ID fraud
coverage).

Both the property and auto models have 6 cross-sell targets/
products. The final recommendation for 5 of the 6 cross-sell
targets that have predictions coming from both the auto and
property models is made by combining both predictions in an
optimal way.

In addition, each one of the 4 models (Classic auto, Classic
property, Advance auto, Advance property) have between 3 to
7 up-sell targets/products (e.g. rental reimbursement, new car
replacement coverage, sewer/sump pump overflow coverage,
ID fraud coverage, etc.).

The auto data consisted of coverage details (limits, de-
ductibles, discounts, etc.), customer demographics (age, gen-
der, marital status, etc.), household characteristics, and various
risk factors. The property data consisted of policy data, cov-
erage details, options and endorsements, dwelling characteris-
tics, household characteristics, customer demographics, sewer
and wildfire risk, and geological data. In addition, we used
other related policy indicators.

The data for this project came from multiple disparate
sources, and the first task was to consolidate the data into
a single database. The next step included data source analysis,
raw/derived feature analysis, business work-flow analysis, sta-
tistical data checks, etc. to determine the features that are most

likely to be available at the time of execution and contained
the most relevant information for the task at hand.

Our data contained both discrete and continuous features.
Some of the continuous features were manually discretized
based on business logic, but most were binned using the K-
Means algorithm [19]. Due to the nature of the data, missing
values were kept as separate states for each node because their
absence was considered significant.

C. Notation Used

Consider a set of insurance policies P = {p1, p2, . . . , pm}.
For each policy pi ∈ P , we have:

• a set of features {fi1, fi2, . . . , fin}. The features are char-
acteristics about the policy / policy holder, e.g number of
cars, type of house, premiums, policy holder characteristics,
etc. Let’s define a matrix F ∈ Rm×n where the rows are
the feature vectors for each one of the m policies.

• a set of targets or coverages {ti1, ti2, . . . , tiz}. Let’s also
define a matrix T ∈ Rm×z where the rows are the coverages
vectors for each one of the m policies.

An important consideration of our domain is that both the fea-
tures and targets are frequently incomplete (i.e. have missing
values). Consequently, we require a recommendation approach
that is robust to missing data. Let F̃ and T̃ refer to incomplete
versions of F and T . We aim to learn a recommender func-
tion, or classifier, r such that r(F̃ , T̃ ) → Rm×z , minimizes
N(r(F̃ , T̃ )− T ) for a given norm N .

Note that we will use the notation Fi to refer to feature i in
a general way, or to refer to the column i of F that represents
a column vector that contains all the values for that feature
for all m policies depending on the context. We will do the
same for the targets Ti.

D. Recommendation problem as a Bayesian Network

Our goal is to use graphical models, specifically BNs, to
model the joint probability distribution Pr(F, T ) from the
available training data. If we constrain a feature variable to
have a single target variable as its parent the joint distribution
factors as

Pr(T ) Pr(F |T ) = Pr(T )

n∏
i

Pr(Fi|Tpar(i))

where Tpar(i) is the parent of Fi.
A key inference task for recommendation is to compute

the posterior distribution for a target given evidence e =
{eT , eF }, where {eT , eF } represent the observed targets and
features respectively. Similarly let h = {hT ,hF } represent the
unobserved (or hidden) targets and features. Without loss of
generality let our query variable be Ti. This gives the following



equation for single target inference:
Pr(Ti|e) ∝ Pr(Ti, e)

=
∑
h

Pr(Ti, e,h)

=
∑
hT

Pr(Ti, eT,hT)
∑
hF

Pr(eF,hF|Ti, eT,hT)

=
∑
hT

Pr(Ti, eT,hT)
∑
hF

∏
i∈c(i)

Pr(fi|Ti)

∗
∏

i6∈c(i)

Pr(fi|tpar(i))

(1)
where c(i) are the children of Ti. The second line uses the
fact that the features are children of the targets and the third
line results from the one parent per feature constraint.

Given input features F and output targets T , and a num-
ber of training examples P , a generative model explicitly
models the joint probability distribution Pr(F, T ) and then
uses the Bayes rule to compute Pr(Ti | F ) (when making
predictions). A discriminative model would instead directly
model Pr(Ti | F ). This allows a generative model to perform
better with missing data. In our domain where we want to use
the same models to give recommendations for both existing
customers (for whom we will have some background data)
and prospective customers (for whom we’d have very little
or no data), BNs give us the best combination of generative
and discriminative. They are generative models by definition,
but since we query them to create recommendations, we are
essentially using them in a discriminative fashion.

There are various ways to do inference, they all fall into two
categories: exact or approximate inference. Both categories
are expensive in different ways [20]. Exact inference is very
sensitive to topology [21]. Approximate inference, especially
Monte Carlo and related sampling approaches, can take a long
time to converge [22]. Very complex networks are problematic
to use for a production system because they cannot scale easily.
Our method creates relatively simple BN structures, while not
compromising on accuracy for predictions. The BN structure
among the target variables is unconstrained, but non-target
variables have Naive Bayes-like constraints in that all non-
target variables have a single target variable as its parent. This
allows for a more tree-like structure than would result if all
variables had an unconstrained BN structure. This allows the
resulting model to scale well for production level inference.

During BN structure learning we allow for the injection of
prior knowledge of what the structure of the network should
look like via the use of white- & black-lists. For our algorithm,
white-lists are edges that are always included in the network
& black-lists are edges that are never included in the network.

E. Performance metrics

There are several metrics often used to measure performance
related to recommender systems [23]. One of the more widely
used is precision and recall @k, this metric assumes that
the recommendation problem can be interpreted as a ranking

Algorithm 1 Discriminative Graphical Model

Input: Matrix of Targets T - {T1, T2, . . . , Tz}
Matrix of Features F - {F1, F2, . . . , Fn}

Output: Directed Acyclic Graph (Structure)
1: BN = Learn joint probability distribution of
{T1, T2, . . . , Tz} using the search and score method
described in [25]

2: for i = T1 to Tz do
3: Do feature selection for target i as described in section

III-G2:
4: top-k = RF feature selection({F1, F2, . . . , Fn}, i)
5: if any(top-k in BN) then
6: duplicate the features which are already present
7: end if
8: add the top-k features to the BN in a Naive Bayes

fashion.
9: end for

10: return BN

Fig. 2. Discriminative Graphical Model Algorithm

problem. In our case, since our number of targets is relatively
small (in the tens instead of hundred of thousands) and
our recommendations are binary in nature (e.g. recommend
coverage A: y/n), our recommender problem can be related to
a binary multi-label classification problem. Hence, a simple
summary measure of binary precision/recall will be used:
Receiver Operating Characteristic, or ROC curves [24] (we
report Area Under the ROC curve - i.e. AUC - in the following
sections).

F. Algorithm Overview

Our proposed algorithm can be explained in two steps: first,
it learns the underlying graph structure between the targets
using any off-the-shelf structure learning algorithm, in our
case we use the implementation proposed in [25]. Then for
each target, we learn the best k features using any off-the-
shelf feature selection algorithm and attach them to the target
node in a Naive Bayes fashion, as shown in Figure 4. Once
we have the final graph structure, we learn the conditional
probability tables for each node in the graph using an off-the-
shelf CPT learning algorithm. The summary of the proposed
structure learning algorithm is presented in Figure 2, and
a more detailed explanation of these steps is presented in
subsequent sections.

G. Structure Learning

The main idea of this step is to restrict the space of
possible graph configurations, so as to reduce the complexity
considerably, while finding an approximation to the joint
distribution Pr(F, T ) that works well for the task at hand.
By doing this we can avoid dealing with the daunting task of
exploring the entire search space like a general purpose graph



Fig. 3. (a): Sample structure among targets, (b): Naive Bayes graph connect-
ing features and target.

Fig. 4. This illustrates the structure described in section III-G. For example
let’s assume {T1,T2,T3} as targets and we choose to pick the top-2 features
for each target. Notice how we are duplicating the node F1 for {T1,T3} and
F2 for {T1,T2}

structure approximation algorithm would face, which can be
computationally expensive. Instead, we reduce the problem to
the two sub-tasks described here.

1) Learning Structure Between Targets: To generate more
accurate predictions it is important to understand and model
the correlation between the targets as accurately as possible.
As stated before, in our case the number of targets is relatively
small (less than 20), hence learning the full joint conditional
distribution among them is not computationally expensive.

We use the search and score method [26] implemented in
[25] to find an approximation to the joint distribution of the
targets Pr(T ). The search and score method transforms the
Bayesian network structure learning problem into a shortest
path problem over an order graph. This order graph is a lattice
made up of layers of variable sets from the Bayesian network
structure learning (BNSL) problem, with the root node having
no variables, the leaf nodes having all variables, and layer i
in the lattice having all subsets of variables of size i. Each
path from the root to a leaf represents a certain topological
sort of the variables, with the shortest path corresponding to
the optimal topological sort and BN.

The resulting graph structure, which approximates the joint
distribution of the targets, can have a more complex structure
(see Figure 3 (a)) and it is used in the final graph construction
discussed in the next section.

2) Feature Selection with Random Forests: The ensemble
voting procedure of random forests allows for the calculation
of an importance score for each variable in the model. There
are many ways to score variable relevance, here we have
used Gini Impurity as the variable importance score to rank
features and select the more relevant ones for each target’s

discrimination task. Under this structure discovery framework,
the feature selection problem is highly related to the problem
of finding the Markov blanket for random variables when
building a graphical model [27]. Our approach aims to find a
simple approximation to the Markov blanket for every target in
our BN, such that inference will be computationally tractable.

We construct our graph by starting with the structure
between targets learned in section III-G1. Then taking the top-
k features associated to each target, obtained by the process
explained in section III-G2, and connecting them to each
target in a Naive-Bayes fashion as illustrated in Figure 3
(b). By doing this the top k features attached to each target
are considered independent of each other during inference,
making the inference process more computationally tractable.
However, we have observed that for some cases, even though
constructing the graph in this manner will make the training
time faster, the inference time can still be expensive. This is
because a single feature may be important to more than one
target, and so could have many incoming edges which leads
to a complex graph. This in turn makes the inference costly
because the CPT explodes in size.

3) Adding Evidence by Duplicating Features: In order
to address the above problem, we made duplicate copies
of features and attached them to each target separately (as
shown in Figure 4). Since we are setting up the features to
be independent of each other for a given target, we argue
that making multiple copies of the same feature will have a
similar effect as having one feature with multiple relationships.
Especially since we are never interested in querying, or
calculating posterior probabilities for, feature/non-target nodes.
Furthermore, with this setup we can have a simple acyclic
graph, which allows for faster inference time.

H. Inference

For BNs calculating posterior marginals on nodes is known
to be NP-hard [28]. In our experiments, we have used
loopy belief propagation [28], which calculates true posteriors
for singly connected networks, and calculates approximate
marginals on a network with loops.

IV. EXPERIMENTS

A. Training of the Deployed Models

For each model, the corresponding training dataset was
stratified split, based on sales state, into 70/30 train/test sets.
As can be seen from Table I, there was much more data for the
Classic models than the Advance models due to the fact that
the Classic line is legacy, and the Advance line only recently
(roughly 5 years ago) got fully deployed to all states. When
building the models, we started by running our algorithm for
various values of k (globally set to 2, 5, 7, & 10), to evaluate
how this would impact the train/test AUCs for each target. By
comparing the average AUC value per target for each value
of k we determined the ideal setting of k for each target. The
final models were then created with the local values of k per
target that would give the best AUC. Sometimes additional
iterations were necessary to refine the discretization bins for



TABLE I
DETAILS OF DATASETS

Line Total Policies
(all states)

Train Set Test Set

Advance Auto 691,763 484,232 207,531
Advance Prop. 192,633 134,844 57,789
Classic Auto 2,528,391 1,769,872 758,519
Classic Prop. 1,754,699 1,228,287 526,412

some features/targets to help boost the AUCs. Discretization
was done as described in Section III-B.

B. Pre-deployment Off-line Validation

This section focuses on reporting empirical results and
comparisons for one of the deployed models: Advance Auto.
In order to validate our approach, we compared our proposed
approach to:

(i) The Inductive Matrix Completion (IMC) algorithm pro-
posed in [10], which takes two matrices: a policy × product
matrix and a feature matrix to learn two low rank matrices
which can be used in a inductive fashion during testing time
to provide recommendations for all the products in a policy.

(ii) Learning the complete (approximated) joint structure (fea-
tures and targets) using the Chow-Liu algorithm [18] which
aims to learn a fast approximation of the BN structure
(joint probability distribution) in the form of a first-order
dependency tree. This algorithm is very fast since it widely
restricts the search space for candidate structures to ap-
proximate the joint distribution. Since Chow-Liu return a
dependency tree with a maximum in-degree of 1, it is more
difficult to enforce the business logic (white and black edge
lists). The results shown in the table are hence unconstrained
with respect to business logic.

For all methods, We have used hyper-parameter tuning using a
validation set. More concretely we compared the performance
of the three algorithms in the following scenarios:

1) Comparisons of performance for all targets using IMC
vs our BN approach: results can be seen in Table II. Note
that our proposed BN approach can make recommendations
in a inductive way taking into account not only the available
features but also current coverages as evidence. This is
not the case with IMC, where once the model is trained
recommendations for an unseen customer are made taking
into account only the features for all possible coverages.
Notice that the performance of our approach is equivalent to

TABLE II
PERFORMANCE COMPARISON FOR ALL TARGETS (AVERAGE AUC)

BETWEEN IMC, CHOW-LIU AND OUR PROPOSED ALGORITHM.

IMC BN Chow-Liu
0.798 0.800 0.773

IMC in average (outperforming IMC in 7 out of 13 targets)
and both of the approaches significantly outperformed the
Chow-Liu approach. However as we will see below there
are other advantages of using our proposed algorithm.

2) Comparisons of performance when we have missing
features: Here we compare performance for IMC vs our
BN approach when we randomly remove features as if they
were missing. Note that we don’t have to process the data
differently with the BN approach since the features can be
treated as unobserved evidence during inference. In contrast,
the IMC approach has to impute the missing values in
order to produce a prediction (mean imputation in our case).
Results can be seen in Figure 5. The x-axis represents the
percentage of missing features and the y-axis is the AUC on
the testing set. For this experiment, in order to be fair with
IMC, we are predicting all the targets at the same time,
this means that no targets are observed at the moment of
prediction, so our algorithm performs a slightly worse when
only the features are observed since it is optimized to use
both the features and the observable targets as evidence.
Figure 5 shows that the proposed BN algorithm performance
degrades much more slowly when features are missing and
even produces reasonable predictions in the absence of
almost all the features (98%). This characteristic is very
important when making recommendations to prospects on
our website where the data collected for recommendations
can be scarce.

3) Performance degradation of the BN approach when
targets are unobserved: results can be seen in Figure 6. The
x-axis represents the number of targets scored (unobserved)
at a time and the y-axis represents the average AUC on the
testing set. For this experiment we are assuming that all fea-
tures are observed. As discussed earlier in the section, if we
want to use our BN models to recommend newer products
to an existing customer based on their existing products,
we can use existing product information as evidence dur-
ing inference. As was the case with missing (unobserved)
features, note that our algorithm degrades very gracefully
with respect to unobserved targets as well. The algorithm
performance ranges from around 80% to 75% average AUC,
depending on the number of observed targets. Note that IMC
never uses existing product information for inference and
relies completely on features and it is optimized to only
use them for predictions. For our deployed systems we are
generating recommendations for each missing product in
the portfolio observing all the other products already in the
portfolio (one-at-a-time). However this may not be the case
for other applications of this recommendation system inside
the company.

4) Training time and Inference time Comparisons: It is
evident from the above comparisons that the performance
of our BN approach is at par to existing state-of-the-art
algorithms such as matrix factorization. However, our al-
gorithm is much faster than the existing BN approaches. On
a 16GB OSX machine, the running time to train our model
over 96 variables is 25 minutes. The matrix factorization
approach took over 4 days to train and tune on the same
dataset and architecture (tuning used 16 combinations, i.e.
360 min/combination), whereas Chow-Liu structure learning
took 10 minutes to train (Table III). We were never able to



Fig. 5. Comparison between IMC and our algorithm scoring all the targets
at once with missing features.

train our model using exact structure learning approaches
from [26] and greedy approach from [17] because the
computer ran out of memory, and on a different machine
we killed the process after 5 days (since it exceeded our
time limits).
Our approach is also scalable when it comes to inference
run-time. The inference run-time using loopy belief propaga-
tion, on a 16 GB OSX machine, and the model trained using
the Chow-Liu approach for 100 records is 45 seconds. For
the same setting, using our trained model, the inference time
is 7.15 seconds which is approximately 7 times faster. The
run-time for matrix factorization is 0.15 seconds, however,
computationally speaking this is a different approach than
the BN one.
For production, we tested our model on our Hadoop cluster
which is running Spark, and for 700,000 records, the run-
time was approximately 2 hours. This approximation is
an upper bound because there are always high-priority
production jobs running in this environment and the number
of resources that were dedicated to our test were dynamically
allocated.

TABLE III
RUN-TIMES FOR TRAINING AND INFERENCE FOR VARIOUS APPROACHES
IN A DETERMINISTIC ENVIRONMENT. INFERENCE IS PERFORMED ON 100

RECORDS.

RunTime IMC BN Chow-Liu
Training 4 days 25 mins 10 mins
Inference 0.15 s 7.15 s 45 s

C. Post-deployment On-line Validation

This second phase of our system was released to all 19 sales
states, with Classic roll-out in Nov 2017 and Advance roll-out
in Feb 2018. We evaluated this phase of our deployed system
using a test-and-learn methodology [29].

The analysis performed was an Agent-level Natural Experi-
ment that measures the incremental lift in sales / performances

Fig. 6. Performance of targets when scored k-at-a-time using our algorithm.

between agents who are actively engaged in utilizing the rec-
ommender system (RS) to similar agents who are not actively
engaged, but have access to the RS. Natural Experiments are
observational studies where randomization of test and control
groups was not accomplished [30]. Synthetic controls are
selected through a matching process to minimize differences
between test and control groups.

The test agents were a subset of hundreds of agents who
were “active” users of the system as of March 13, 2018. Here,
“active” is defined as having a click rate, on recommendations
generated by RS, greater than or equal to 1 per business day
between launch and March 2018. The RS system was released
to all agents across all states in Nov 2017.

Each test agent was matched to a varying number of control
agents to ensure most similar controls are selected and less
similar controls are not forced into being in a test agent’s
control group.

The analysis was performed at the monthly grain, and
the timeframe was defined taking into account data from 12
months prior to the program launch and 3 months post system
launch.

The analysis method, Difference-in-Difference (D-I-D) [31],
makes the underlying assumption that whatever happened to
the control group over time is what would have happened to
the treatment group in the absence of the program.

The analysis results are based on both Classic & Advance
since the deployed models where built for both lines. For all
lines, we saw statistically significant increases in PIF counts
and written premiums, respectively. No statistically significant
differences between test and control groups for new policy
counts and counts of policies attrited were detected.

We also looked at the umbrella product (i.e. additional lia-
bility coverage above the limits of your homeowners and auto
insurance policies) separately and saw statistically significant
increases for new product counts (9.18% lift). For this product
we also had PIF counts and statistically significant decreases
for counts of policies attrited (-9.54% lift; here negative is a
good value). While directional in nature, we saw an increase



in written premiums as well.

V. CONCLUSIONS AND FUTURE WORK

In summary, we have proposed, implemented and deployed
a BN-based recommendation system framework that has sev-
eral advantages including:

1) Faster training (structure discovery) and inference with
respect to other approaches. We achieve training acceler-
ation of the order of ∼ 700x (5 days for traditional BN
structure learning to 25 minutes with our algorithm). This is
paramount for future RS implementations where the number
of possible recommendations can be expanded from best
products to offer to best next actions (customer engagement,
discounts, etc). This will also be an important factor if
we want our RS to update frequently based on our daily
interactions with our customers.

2) Dealing gracefully with missing values. This is very rele-
vant for recommendations to prospective customers where
customized recommendations can be generated on the fly
given the available information about the potential insured.

3) Our method is scalable both for training and inference, and
can be easily implemented in a distributed fashion.
During this process we also compared our results to some

deep learning approaches, and we are still working to refine
those models for the future.
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