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Abstract. A sizable body of work on relative attributes provides evi-
dence that relating pairs of images along a continuum of strength per-
taining to a visual attribute yields improvements in a variety of vision
tasks. In this paper, we show how emerging ideas in graph neural net-
works can yield a solution to various problems that broadly fall under
relative attribute learning. Our main idea is the observation that rel-
ative attribute learning naturally benefits from exploiting the graph of
dependencies among the different relative attributes of images, especially
when only partial ordering is provided at training time. We use message
passing to perform end to end learning of the image representations,
their relationships as well as the interplay between different attributes.
Our experiments show that this simple framework is effective in achieving
competitive accuracy with specialized methods for both relative attribute
learning and binary attribute prediction, while relaxing the requirements
on the training data and/or the number of parameters, or both.

Keywords: Relative attribute learning, graph neural networks, multi-
task learning, message passing

1 Introduction

Visual attributes [6] correspond to mid-level semantic and even non-semantic
concepts or properties of the image or objects contained in the image that are
interpretable by humans. For instance, an image can be “natural”, “smiling” or
“furry” depending on the properties of the key entities contained in it. The ability
to associate such attributes with images has enabled systems to perform better in
traditional categorization tasks, and even go beyond basic level naming [18]. The
insight in this line of work is to first select features that can predict attributes
for the object class of interest – the subsequent classifier must then leverage only
those “relevant” features since material properties or shape may be differentially
important for different categories. The concept of “relative attributes” takes this
idea further [18] by arguing that the strength of an attribute in an image is best
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judged in the context of its strength with respect to all other images in the
training data rather than as a binary concept. For example, while it is difficult
to characterize how “man-made” an image is, one could setup a comparison
where humans compare the images in terms of this attribute. This strategy of
describing images in relative terms works well in challenging cases [13] – for
instance, calculating how “open” an image is versus another.

Since the early works on relative attributes [21, 20, 23], several papers have
proposed more task-specific models for ranking based on specialized features. But
given the success of convolutional neural networks (CNN) architectures, most
recent proposals utilize CNNs for feature learning in the context of learning
the overall ranking. For instance, given a set of annotated image-pairs with
respect to one/more attributes, the network learns weights that are maximally
consistent with the attribute-specific ranking of the images. Related ideas have
also explored designing image-part specific detectors, that are aligned to an
attribute. For instance, what is the spatial support for an attribute such as
“smiling”. Clearly, this will involve localizing the visual concept to a part of the
image, say the mouth or lips region. In [20], the authors transitively connect
the visual chains across the attribute continuum and make the case that feature
extraction and ranking should not be performed separately.

The starting point of our work is the observation that the space of attributes
which induce a ranking over the images share a great deal of correlational struc-
ture. For instance, the attribute “furry” may be associated with the attribute
“four-legged” and the attribute “congested” may have some information to pro-
vide to the attribute “man-made”. This induces a natural graph of attributes
and images, where the input data provides either pair-wise relationships be-
tween images for one/more attributes or a partial (or full) ranking of the images
for the attribute. We do not assume that the annotation is exhaustive – many
edges (or relationships) between the images may, in fact, be unavailable. Ex-
tending recent work on graph neural networks (GNNs) which extends the notion
of convolution and other basic deep learning operations to non-Euclidean grids
([11, 19, 16, 9, 3]), we show how these ideas yield a natural model for learning
on this graph involving image↔attribute and image↔image edges. Not only are
the image features (relevant for each attribute) extracted automatically but we
also concurrently learn the similarity function that is most consistent with the
given pair-wise annotations as well as the latent relationships between the at-
tributes (similar to multi-task learning). This machinery is simple, yet performs
competitively with more specialized proposals on several different problems.

Our contributions are: (1) we formulate and solve relative attribute learn-
ing via a message passing scheme on a graph, where the convolutional layers,
ranking as well as imputation of unseen relationships is performed concurrently.
(2) our framework yields results similar to the best reported for each task with
minimal change, often providing sizable reduction in the number of parameters
to be estimated or with far less stringent requirements on the training data an-
notations. We note that GNNs were independently used in a classification task
very recently in a paper made available on arXiv [8].
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2 Related Work

Visual attributes. Visual attributes are semantic properties in images which
can be understood by humans and are shared among all images of similar cat-
egories (e.g. all images of human faces share the attribute “smiling”, whose
strength can vary from weak to strong as we will show with examples shortly.
Most existing work in visual attributes focuses on binary attribute prediction
(BAP) where each attribute is predicted from a given image and cast as a binary
classification problem. “Relative attributes” were proposed in [18] and have been
explored in a number of settings [20, 21, 23]. Several current techniques use deep
neural networks to learn relative attributes (e.g. [21]), and also borrow ideas
from attention mechanism research (e.g. [20]) to help the networks focus only on
the most informative areas in the images. Most of these works deal with a pair of
images at a time. Our work shows that dealing with groups of images on a fully
connected graph instead of just pairwise comparisons improves performance.

Multi-task learning. Multi-task learning is intended to achieve knowledge
sharing by learning several correlated tasks at the same time. This technique has
recently been used in binary attribute prediction. Learning several correlated at-
tributes together can improve performance, and this has been demonstrated by
some recent works [1, 12, 22]. Abdulnabi et al. [1] propose a multi-task CNN
framework which improves accuracy compared with learning one attribute at a
time. Wang et al. [22] designed a simpler deep multi-task network for prediction
of face attributes. In contrast to most strategies related to multi-task learn-
ing, our multi-task formulation learns attributes simultaneously and is shown to
benefit relative attribute learning.

Graph neural networks (GNN). Graph neural networks were proposed
by [11, 19], where the authors describe GNN as a parameterized message passing
scheme which can be trained. Later, Li et al. [16] proposed using gated recurrent
units (GRUs) within GNNs, which much improves the representation capacity
of the network and makes it suitable for graph structured data. Gilmer et al. [9]
generalized the GNN using message passing neural network and demonstrated
state-of-the-art results on molecular prediction benchmarks. More recently, con-
current to and independent of our work, [8] applied GNNs for classification and
achieved good results on several different datasets.

3 Approach

Our approach is based on the observation that in a relative attribute learning
task, different images are correlated and the attributes may or may not be cor-
related. The learning procedure can benefit from exploring the similarity among
multiple images on a graph, where each node represents an image and the edges
are formed based on the relationship between the to-be-learned representations
of the nodes. Furthermore, such a graphical structure can benefit multi-task
learning where we can add different types of nodes to the graph for representing
different attributes that are being learned. In this way, we explicitly learn the
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properties of certain attributes, the interplay between the attributes when nec-
essary, the representations of the images and their relationships on the graph in
a way that best informs the task at hand.

We first explain how the input images are mapped into the graph repre-
sentation, and give the details of our network architecture for relative attribute
learning in the context of one attribute. Then, we show how the construction can
be used to perform multi-task attribute learning with minimal modifications. Fi-
nally, we also show how our model can be used for a binary attribute prediction
(BAP) task efficiently. The overview of our framework is shown in Fig. 1.

3.1 Network Architecture

Let I = {I1, I2, · · · , In} be the set of input images, and for a certain at-
tribute t (e.g., smile), we assume that a set of pairwise relationship labels
Pt
l = {φ(Ii, Ij)}ni,j=1;i 6=j , where φ(Ii, Ij) indicates the relative strength of the

attribute t between the two images Ii and Ij . This relationship may be logical
(e.g.,“stronger than” or “weaker than”). With this data, a generalized GNN is
trained where both the node features (representations of the images) and edge
weights are learned. The core architecture of our GNN is shown in Fig. 2.

Assume that we operate on groups (or mini-batches) of a certain size (which
is allowed to vary) sampled with or without replacement from the underlying
training dataset. The relationships among all the images in each mini-batch
(S) in the training set are represented using a fully-connected graph GS =
(V,E), where each node vi in V corresponds to an image Ii in the mini-batch

Fig. 1. Overview of our framework for RAL and BAP tasks. Since many natural at-
tributes of images are interrelated, discovering their common latent representations
would be beneficial to the attribute learning tasks. This can be efficiently achieved by
mapping these images to a graphical structure. Every image has a corresponding node
on the graph and a corresponding output node. The initial features f(·) for the nodes
are generated using a CNN on the images and the edge features and following updates
are performed using GNNs (details in Fig. 2). The weights in the entire framework
including those in the CNN and GNN are trained end-to-end.
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Fig. 2. The architectural details of our GNN which remains the same for both RAL and
BAP. The edges on the graph are learned from adjacent nodes using a parameterized
function (ϕϑ, see (3)), which is shared among all edges. The “m” in this figure refers
to the message for a node passed from its connected nodes and edges, which is defined
in (4). Then, a GRU cell takes as input a node and its corresponding message, and
outputs the updated node. The parameters in GRU are also shared across all nodes.

S. Each time, the network takes in a group of images and passes them through
a convolutional neural network. This may also be thought of as a set of |S|
convolutional networks that share weights. The representations derived from
this network yield the initial representations of the node features as

x
(0)
i = f(Ii), (1)

where f(·) refers to a CNN which operates on the images. Here, Ii is the input

image and x
(0)
i is the initial node feature for the image at time k = 0. Next, the

network learns edge features as,

e
(k)
i,j = ϕϑ

(
x
(k)
i , x

(k)
j

)
, (2)

where ϕ is a symmetric function parameterized with a single layer Neural Net-
work:

ϕϑ(x
(k)
i , x

(k)
j ) = Nedges

ϑ

(
||x(k)i − x(k)j ||1

)
. (3)

We assume that ϕϑ is a metric which is learned by a non-linear combination
of the absolute difference between the learned features of the two nodes (or
any other simple function involving the node features). This ensures that the
symmetric property ϕϑ(a, b) = ϕϑ(b, a) is satisfied by design.

Our goal now is to update the belief at each node based on the beliefs at
the other nodes in the graph as well as its own state at the previous time point.
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To accomplish this, we use a message function M(·) to aggregate information

from all neighbors of each node. In particular, for each node x
(k)
i , the message

is defined as below,

m
(k)
i =

∑
j,j 6=i

M
(
x
(k)
j , e

(k)
i,j

)
. (4)

Here, M(·) is parameterized using a single layer neural network whose details
are presented later in section 3.2. We now need to define a mechanism that
utilizes the messages received from the node’s neighbors and its previous state
to update its state. To do so, we use an updating layer G(·) which takes as
input a signal x(k) (the current state of the node) and produces x(k+1). This is
accomplished using a Gated Recurrent Unit (GRU) as the updating function.

x
(k+1)
i = G

(
x
(k)
i ,m

(k)
i

)
. (5)

With this setup in hand, we simply use a readout function oi = R(xi) to get
the output from each node and finally define our loss function based on these
outputs from all relevant nodes on the graph as

Loss = R ({oi}ni=1) , (6)

where n is the number of graph nodes. Note that R(·) can also be parameterized
with a simple (or more complicated) neural network depending on the needs of
the application. The specific form of R(·) depends on the concrete task, which
will be specified in the following Sections 3.2–3.3.

3.2 Learning Relative Attributes, One at a Time

The Relative Attribute Learning (RAL) task seeks to learn a network that, given
input images, outputs pairwise labels according to the relative strength of certain
attributes between each pair of images. In this section, we consider training a
network for one attribute at a time.

Recall that our network is designed to better explore the correlated informa-
tion among different images. So unlike other approaches in RAL ([21, 20]) which
take two images at a time as an input, we sample a group of images from the
training set as input at every draw. The size of the group need not be fixed
and can vary for learning different attributes in a single dataset or different
datasets, because our network has the benefit of weight sharing on the graphi-
cal structure of the samples. We use the five convolutional layers and the first
two fully-connected layers in AlexNet [15] (conv1 through fc7) although other
architectures can be substituted in. The dimension of the output feature vector
of the node is fixed to be 4096.

Messages. We impose a fully-connected graphical structure on the images
in each group. After mapping these images on the graph, we perform message
passing, which is effective in information propagation among the nodes. We adopt
the strategy to learn edge features from the current node hidden representation
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formulated by Gilmer et al. [9], as suggested in (2). The parameters of the edge
learning function ϕϑ are shared among all nodes on the graph. Then for every

node x
(k)
i on the graph, a message signal will be extracted from all the in-coming

nodes through the edges, see (4). Here, we specify the message function M(·) as,

M(x
(k)
j , e

(k)
i,j ) = ReLU

(
W
(
x
(k)
j ‖e

(k)
i,j

)
+ b
)
, (7)

where ‖ denotes the concatenation operator of two vectors, W and b are the
weight matrix and the bias respectively, and ReLU(·) is the rectified linear unit
(ReLU) function. We would also like to note that the parameters (W and b) of
the message function M(·) are also shared by all nodes and edges in our graph,
thus providing an explicit control on the number of parameters.

Updating. Let us now discuss the updating function for nodes. At each iter-
ation, each GRU takes the previous state of the node and an incoming message

as input, and produces a new hidden state as the output (see Fig. 2). Let x
(k−1)
i

be the node’s hidden representation at the previous time step, m
(k)
i be the mes-

sage received via (4), and x
(k)
i be the updated node. With these notations, the

basic operations of GRU are simply given as,

zki = σ
(
W zm

(k)
i + Uzx

(k−1)
i

)
,

rki = σ
(
W rm

(k)
i + Urx

(k−1)
i

)
,

x̃
(k)
i = tanh

(
Wm

(k)
i + U

(
rki � x

(k−1)
i

))
,

x
(k)
i = (1− zki )� x(k−1)i + zki � x̃

(k)
i , (8)

where z and r are the intermediate variables in the GRU cells, σ(x) = 1/(1+e−x)
is the sigmoid function and � is element-wise multiplication.

Each node in our graph maintains its internal state in the corresponding
GRU, and all nodes share the same weights of the GRU, which makes our model
efficient while can also seamlessly deal with differently sized groups as input.
In this work, we use one time step of GRU updating. During testing time, any
number of images are allowed, and the network will output a pairwise label for
every two images based on the obtained value of output nodes on the graph.
After constructing our graph using (1)–(6), the loss defined on the output of
graph takes the form

RALLoss =
∑

i,j,i 6=j

−L log(Pij)− (1− L) log(1− Pij),where (9)

L =


1 if Ii � Ij ,
0 if Ii ≺ Ij ,
0.5 otherwise,

and Pi,j = oi−oj (outputs of nodes i and j). This formulation has a nice property
that it is robust to noise as described in [4], and symmetric by construction so
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that we can easily utilize training data where some pairs of images appear with
“equal” label for one/more attributes.

3.3 Learning Relative Attributes, All at Once

In this section, we show that our graphical structure can be efficiently applied
to learn multiple relative attributes all at the same time i.e., perform multi-task
attribute learning. We consider two aspects of multi-task learning, (1) the per-
formance of RAL can be improved by utilizing several attributes which have
common latent representations. Although this has been demonstrated in binary
attribute prediction (BAP) setting, we present experimental results showing that
RAL can benefit from multi-task learning. (2) The second aspect is the efficiency
of the construction. While multi-task learning can improve the performance when
attributes are correlated, in the previous methods [1, 22], the number of param-
eters of the network grows much faster as a function of the number of attributes
learned together, which increases the cost of training a multi-task network. As
an example, if the number of parameters trained in RAL one at a time is O(K2)
then our version only increases the number to O(K2 +nK), where n is the num-
ber of different relative attributes learned simultaneously. This is much smaller
than O(nK2) which may be needed within other multi-task approaches [1, 22].

We note that a näive way to adapt our network (Fig. 2) to the multi-task
setting proceeds as follows. We simply change the dimension of the output oi
from 1 to m where m is the number of attributes. But the only change this
induces is in the size of the weight matrix in the readout function. We find that
in this case, the graphical structure may slightly lose its expressive capacity. To
address this issue, unlike section 3.2, which treats all nodes in the graph in the
same way, here, we define two different types of nodes xi, i = 1, 2, · · · , n, and
ri, i = n + 1, n + 2, · · · , n + m, where n is the number of input images in each
group (to be consistent, we choose n = 5 throughout our experiments) and m
equals the number of attributes the network is learning at the same time. Here,
xi has the same meaning as in section 3.2, which corresponds to one image and
each rj corresponds to a certain attribute. It is important to note that while
the representation at xi is learned by the convolutional network, the attribute
node rj is randomly initialized at the beginning of the training phase and keeps
getting updated in a global manner, similar to the other parameters in the GNN.

This scheme allows us to explicitly learn a hidden representation for each
attribute in a way that the latent variables of the graphical model are influencing
all attribute nodes — this is similar to multi-task learning where we expect that
learning related tasks can benefit each other when carried out concurrently.
The feature extraction process using the convolutional network and the GNN
procedure remain identical as in section 4.1. The only change needed is to redefine
how we use the readout function R(·) to get the output. Here, oi,j = R(||xi −
rj ||1), where for oi,j , i gives the index of nodes for the images (from 1 to n) and
j gives the index of different attributes (from 1 to m). The loss function is then
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defined as the sum of the loss for each single attribute (see (9)) as,

RALLossmulti =

m∑
i=1

RALLossi. (10)

3.4 Binary Attribute Prediction

In this section, we present details of how our graphical model can also be used
to predict binary attributes with comparable accuracy as the multi-task CNN
model [1], but using much fewer number of parameters.

Binary attribute prediction (BAP) task seeks to predict whether an image
has a certain attribute (e.g. whether a person is wearing a necktie), which can be
thought of as a binary classification task. As suggested in papers for multi-task
learning [1, 22], simultaneously learning several attributes which are correlated
can improve the performance of BAP. In this setting, the labels no longer provide
pairwise information. So, it is not simple to easily extend other RAL methods
and adapt them for BAP. For example, the construction using Siamese network
[20] cannot be easily modified for BAP since the subnetworks are no longer
linked – this is because it is the pairwise annotations that link the networks.
But our network can still benefit from a fully-connected graph structure on the
training samples because despite the unavailability of pairwise annotations, the
images themselves are still related. So, we can use the same basic architecture.
The framework before loss layer remains the same as the network in section 3.3.
The loss function for BAP is simply defined as

BAPLossi = −L log(Pi)− (1− L) log(1− Pi), (11)

where L is the binary label of image Ii, and Pi = oi. The total loss is defined as,

BAPLossmulti =

m∑
i=1

BAPLossi. (12)

4 Experimental Results

In this section, we analyze the performance of our model on several different
settings described in section 3. First, we present some key implementation
details. Our network takes in a group of images and outputs the pairwise rela-
tionships for this group (in a relative attribute task) or a binary label for each
image (in a attribute prediction task). We split the train/test set randomly.
Then, we randomly split the train/test set into groups (we choose 5 images per
group, but the number can vary) and use this as the input to our network. We re-
port the pairwise accuracy measured on the groups of images. In a preprocessing
step, we subtract the mean of training set and crop images to size 227× 227.

For training, we initialize the conv1 to fc7 layers using AlexNet pre-trained
on the ILSVRC 2012 [15] dataset and randomly initialize other parts using the
Xavier initializer [10]. We use mini-batches of size 10 and Adam optimizer [14]
with β1 = 0.9, β2 = 0.999. The learning rate of relative attribute learning task
is 0.0001, and for attribute prediction task, we set the learning rate to 0.00001.
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4.1 Relative Attribute Learning, One at a Time

In this experiment, we evaluate the network described in section 3.2. The goal
is to compare pairs or sets of images according to the strength of a given at-
tribute. We used the OSR scene dataset [17] and a subset of the Public Figure
Face Dataset (PubFig) [18]. The OSR scene dataset consists of 2,688 images
with outdoor scene attributes (natural, open, perspective, large-objects,
diagonal-plane and close-depth). The subset of the PubFig contains nearly
800 images from 8 random identities. We split the train/test set randomly and
then split the train/test set into groups and use this as the input of network.
We report the results in terms of pairwise accuracy on the groups of images.

Our scheme makes it possible to make use of the information in the group of
images as a whole, which is more informative than just a pair of images (common
to Siamese Networks construction). For a fair comparison with other methods,
we measure the performance of our model by computing the pairwise accuracy
for all pairs in each group.

We choose two methods for baseline comparisons. The first one is the work
of Souri et al. [21], which trains a deep convolutional network to learn relative
attributes for pairs of images. The second one is the DeepPermNet [2], which
learns relative attributes by learning permutations. Note that this method needs
fully ranked sequences of images as input, which is a more stringent requirement
compared to our network and the work of Souri et al. [21], which only needs
pairwise labels during training. The accuracy results are shown in Tables 1–2.
Qualitative results are shown in Fig.3.

Table 1. Relative attribute learning accuracy evaluated on OSR dataset. On average,
we outperform all previous methods. The penultimate row presents the results of our
network in section 4.1 and the last row presents the results of our multi-task network
in section 4.2, which learns all of the six attributes at once.

Method natural open perspective large-objects diagonal-plane close-depth Mean
Souri et al.[21] 99.4 97.44 96.88 96.79 98.43 97.65 97.77

Cruz et al.(AlexNet)[2] 97.21 96.65 96.46 98.77 94.53 96.09 96.62
Cruz et al.(VGG)[2] 96.87 99.79 99.82 99.55 97.99 96.87 98.48

Ours 99.56 99.19 99.30 98.08 99.63 97.98 98.96
Ours(multi-task) 99.89 99.42 98.71 98.80 99.46 98.93 99.20

Compared to the work of Souri et al. [21], we outperform that method by
a margin of 4% on the Public Figure Face Dataset, and by 1% on the OSR
scene dataset. Since the accuracy on the OSR dataset is already high, a 1%
improvement is meaningful. Compared with the DeepPermNet [2] algorithm, we
outperform that algorithm on both datasets on average. Note that DeepPermNet
requires ranked sequences of data with the same length as training data, which
may not be possible in some applications. Also note that both Souri et al. [21]
and DeepPermNet [2] use VGG CNN model in their experiments, while we choose
the simpler Alexnet [15] in all experiments, which has far fewer parameters. As
a result, our model can be trained faster than the baseline models.
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Fig. 3. Qualitative results on RAL (one at a time) from our network. We randomly
choose five different images from four different attributes from the PubFig and OSR
datasets and show the results by ordering them for those attributes. The images are
ranked by the corresponding output value of our network. The first two rows are from
the PubFig dataset and the last two rows are images from the OSR dataset.

Fig. 4. Qualitative results on RAL (all at once) using our network. The images are
arranged again by ordering them according to the output of our network as Fig. 3
but these are learnt from our multi-task loss function (Eq. (10)). We can see that the
images are quite nicely ordered even without learning the order explicitly as is done
in DeepPermNet. We also note that the performance on almost all the images and the
attributes is consistent and any randomly chosen subset gives us good quality results.
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Table 2. Relative attribute learning accuracy evaluated on the PubFig dataset. Our
results outperform the work of Souri et al. [21], which is the state-of-art for the tradi-
tional setting where only pairwise labels are used. Our results are also competitive and
get slightly better results than those in Cruz et al. [2], which uses ranked input data.
The last row shows the results of our network with multi-task loss function, which
learns all of the 11 attributes at once.

Method lips eyebrows chubby male eyes nose face smiling forehead white young Mean
Souri et al.[21] 93.62 94.53 92.32 95.59 93.19 94.24 94.76 95.36 97.28 94.60 94.33 94.52
Cruz et al.[2] 99.55 97.21 97.66 99.44 96.54 96.21 99.11 97.88 99.00 97.99 99.00 98.14

Ours 98.28 97.11 98.67 98.05 98.62 99.24 97.32 99.26 98.37 99.36 99.31 98.51
Ours(multi-task) 99.67 99.33 99.00 98.33 97.32 98.46 99.00 97.51 99.12 97.66 98.66 98.55

4.2 Relative Attribute Learning, All at Once

In this experiment, we evaluate our multi-task network described in section 3.3.
We learn all the attributes in each dataset and report the prediction accuracy
results for each of the attributes on two different datasets in Table 1 and 2.
Qualitative results are shown in Fig. 4.

As the data presented show, our multi-task model slightly outperforms our
single attribute learning model (section 3.2) and this indicates that some of
the attributes are interrelated thus helping the learning process when we learn
them all at once. Note that in our framework, with every additional attribute
to learn, the increase in the number of parameters of the network is equal to
the dimension of the two vectors, one in the readout function and one in the
attribute node (in our work, the dimension of these two vectors is 4096×1). The
reader may contrast this with most multi-task learning networks, such as [22, 12,
1], many of which use an additional CNN or several more fully connected layers
for each additional attribute, which contribute to more parameters compared to
our model.

4.3 Binary Attribute Prediction

Here we evaluate our network for attribute prediction task described in section
3.4. The multi-task CNN model [1] is a natural choice for the baseline. This model
proposes to pre-train a convolutional neural network on each attribute to get the
feature vectors, and then performs multi-task learning for multiple attributes.
That model has a large number of parameters and a rich representation capacity.
Similar to [1], we also evaluate our model on Clothing Attributes Dataset [5].
It contains 1,856 images and 26 attributes. The ground truth is provided at the
image-level, and each image is annotated for every attribute. For comparison,
we ignore the multi-class value attributes as in [1] and use this information in
the same way to divide the 23 binary attributes into groups. We then use our
multi-task network to train each group of attributes together. We report our
results in Table 3 and the group information is provided in Table 4. M-CNN
is the multi-task framework without group information in [1] and MG-CNN
is their multi-task framework with group encoding. The performance of our
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Table 3. Attribute prediction accuracy on the Clothing Dataset [5]. Similar to [1]
we partition the 23 binary attributes into 4 groups (shown in Table 4). We achieve
comparable results as those from MG-CNN [1], but with significantly fewer parameters
(see section 3.3) and faster training speed.

Method Colors Patterns Cloth-parts Appearance Total

M-CNN[1] 91.72 94.26 87.96 91.51 91.70

MG-CNN[1] 93.12 95.37 88.65 91.93 92.82

Ours 91.64 96.81 89.25 89.53 92.39

model is comparable to the results presented in MG-CNN framework, but is far
more efficient both in the number of parameters and convergence time. For the
number of parameters, [1] needs one CNN for each attribute, while we only add
4096×1 parameters twice. In terms of training time, MG-CNN[1] takes 1.5 days
for training on the Clothing dataset with two NVIDIA TK40 16GB GPU, while
our training takes less than 4 hours for all 4 groups of attributes on two NVIDIA
Geforce GTX 1080Ti 12GB GPU.

Table 4. Grouping information used in Clothing Dataset[5]

Group Attributes

Colors
black, blue, brown, cyan, gray,

green, many, red, purple, white,yellow

Patterns floral, graphics, plaid, solid, stripe, spot

Cloth-parts necktie, scarf, placket, collar

Appearance skin-exposure, gender

4.4 Limitations

For our network to get a sizable performance benefit, we want that the graph
formed by each random sample, i.e., group or mini-batch of n (e.g., n = 5)
images should be “connected” or at least a subgraph with more than 2 nodes
is connected. This allows learning from more than one image pair at a time to
be meaningful – which is the main strength of our proposal. But if most pair
labels do not have any node overlap, then the graph formed by a group or mini-
batch of images will not have a connected component of size larger than two. We
refer the reader to [7] (Chapter 4) to see the technical aspects of connectivity.
The UT-Zappos50K dataset [24, 25] manifests this behavior (and is not ideal
for our model to deliver performance gains). Under this condition, our model
actually performs similar to (although not exactly the same) a Siamese network
used in the literature. The results in Table 5 indeed support this intuition: our
performance is only slightly better than [21], rather than stronger improvements
we see elsewhere.
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Table 5. Relative attribute learning evaluated on UT-Zappos50K-lexicon dataset. It
contains 50025 images of shoes with annotations on 4000 ordered pairs for each of
10 fine-grained attributes. The method in [2] does not directly work on this dataset
because of its “ordered sequence” requirement on the input data.

Method comfort casual simple sporty colorful durable supportive bold sleek open Mean
Souri et al.[3] 88.93 89.20 88.27 91.33 91.67 89.27 91.00 88.40 88.27 86.80 89.31

Ours 88.80 89.82 90.13 92.60 91.87 90.07 92.73 88.00 87.53 89.13 90.07

5 Conclusions

We presented a simple framework that can perform both relative attribute learn-
ing and attribute prediction. To exploit the underlying relationships between
latent representations of a variety of attributes among a collection of images
in a dataset, we proposed a simple framework based on natural instantiation of
graph neural network. This formulation of a graph neural network can effectively
encode the correlational information among multiple images and the multiple
attributes as demonstrated in our experiments on three different datasets. Our
framework can be used to learn the relative attributes either one at a time or
all at once with only a modest increase in the number of parameters compared
to other multi-task based methods. Because our framework learns mainly from
pairs of images and does not require a full ranking it concurrently is less stringent
on the annotation requirements of the training dataset. To the best of our knowl-
edge, this proposal is among the first to explore the efficacy of multi-task GNN
formulations for relative attribute learning. Our experiments also demonstrate
the effectiveness of this architecture in achieving or surpassing the state-of-the-
art results even for binary attributes prediction, where each attribute is predicted
in a binary classification setup. The project webpage includes results on other
applications, including predicting body mass index (BMI) that were not covered
in detail in the main paper.
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