
RoCKET: Robust Classification and Knowledge Extraction from Text

Glenn Fung
American Family Insurance

gfung@amfam.com

Devin Conathan
American Family Insurance

dconatha@amfam.com

Sukrat Gupta
American Family Insurance

sgupta@amfam.com

Shi Yu
shi.yu@hotmail.com

Luisa Polania
American Family Insurance

lpolania@amfam.com

Abstract
In this paper we describe RoCKET (Robust Classification
and Knowledge Extraction from Text), a machine learning
platform and interface that allows users to extract informa-
tion and answer non-trivial questions about a large corpus
of unstructured documents. Our approach leverages state-
of-the-art text representations, active learning and crowd-
sourcing to efficiently label concepts and train algorithms
to classify documents without requiring extensive domain
knowledge expertise from the users. We claim and show em-
pirical evidence that (1) our implementation of active learn-
ing algorithms provides a more efficient labeling experience
than passive learning, (2) our text representations improve
performance over baseline bag-of-word models when the
number of labeled examples is small, and (3) RoCKET can
be applied in industry settings and more specifically the in-
surance domain where it is a valuable tool to extract relevant
customer-related information during claims processes.

1 Motivation

Humans regularly extract information from small
amounts of unstructured text. For example, a person
can quickly glance at a magazine’s table of contents and
select the articles that relate to a particular subject of
interest. However, humans cannot ingest and analyze
large amounts of data in the same way; there is a need
to emulate the human level of understanding that can
scale to large amounts of unstructured text data.

According to an estimate from IBM, 2.5 exabytes
(billion GB) of data was generated every day in 2012,
“About 75% of data is unstructured, coming from
sources such as text, voice and video” [29]. A good
portion of this information comes in the form of un-
structured text. Much of the key information needed
for understanding and optimizing decision-making pro-
cesses in industry settings resides in human-composed,
unstructured text such as messages, reviews, logs and
notes. In order to leverage the power of large-scale ma-
chine learning and extract the value encoded in these
data, they must be processed and transformed into
structured data.

In any industry, most existing input-systems that

capture structured data also capture additional unstruc-
tured data that generally require a human level of un-
derstanding in order to decipher. For example, a form
typically filled in by a physician or nurse during a doc-
tor’s visit would include structured data (e.g. name,
weight, blood-type, etc.) as well as typed comments
about the patient’s symptoms or reasons for visiting.
Although these typed notes were originally meant for
human consumption, there is an obvious potential to
algorithmically analyze this information to provide ex-
tra value (e.g. feedback, quality measures, clinical trials,
medication interaction, etc.).

Hence, in many industries, there exists a need to au-
tomatically extract key information from unstructured
text. However, most commercially available systems
lack a flexible, user-friendly, and configurable solution
for this type of automation. Three of the reasons for
this are: (a) Most of the commercial packages for this
task are rule-based and require subject knowledge ex-
pertise in order to design the appropriate rules for the
task. Even with considerable effort, the rules gener-
ated by users can have poor coverage and performance.
(b) open source Natural Language Processing (NLP)
toolkits generally require experts to configure and ap-
ply and (c) getting large amounts of ground truth data
is prohibitively expensive and time consuming. It also
generally requires specialized graphical user interfaces.

There are existing systems that allow users to per-
form simple searches to retrieve documents that con-
tain key phrases. Sometimes these systems leverage pre-
defined dictionaries (synonyms) or basic topic-modeling
to get a slightly richer set of documents. However these
search-based approaches are far from optimal and fun-
damentally limited in their ability to answer complex
questions or extract nuanced concepts.

In this paper, we describe RoCKET (Robust Clas-
sification and Knowledge Extraction from Text), a sys-
tem that is flexible, powerful and easy-to-use.

RoCKET allows users to automatically process a

given corpus of unstructured text records to answer non-
trivial questions or extract concepts without requiring
extensive knowledge about the subject. It combines
state-of-the-art text representations and leverages the
crowd-sourcing active learning platform NEXT [13]
to efficiently gather labels from any number of users
simultaneously.

In the insurance industry, there are many interac-
tions with customers that are logged by company repre-
sentatives. Some of the information found within these
notes is not captured in any structure form in the corre-
sponding systems. For example, during a call, the rep-
resentative should ask the customer if renting a car is
necessary or acknowledge if a car rental was requested.
While existing systems would store whether a car rental
has been provided, they would not indicate if it were of-
fered or requested. Hence, there is an opportunity to
extract this information from the unstructured notes.
This extra information is useful for all kinds of analyses
about standard of work and customer experience.

Formally speaking, for any given concept c we wish
to produce a predictor function fc that maps an un-
structured body of text t to a binary label indicating if
that concept is present. That is, fc : T→ {0, 1}, where
T is our corpus. ŷ = fc(t) denotes our prediction of
whether concept c is present in document t. To produce
fc, we take a collection of labeled pairs {ti, yi}ni=1 and
learn a function such that fc(ti) = yi for as many i as
possible but generalizes well to any other t ∈ T. Thus,
we have formulated our concept extraction problem as
a machine learning classification problem.

In Section 2 we discuss related work and similar
systems. In Section 3, we discuss the details the
RoCKET framework. In Sections 4 and 5 we show
empirical evidence of the performance and applicability
of our system. Finally, in Sections 6 and 7 we draw
conclusions and discuss some ways we are improving
RoCKET.

2 Related Work

Concept extraction is usually domain specific, so re-
searchers prefer to build their own tools. The recently
developed DeepDive is a knowledge base construction
(KBC) system to populate a structured database with
information extracted from unstructured documents
[32]. DeepDive is characterized by statistical inference
using factor graphs constructed by entities and rela-
tionships extracted from unstructured data, and its in-
cremental KBC process is iteratively improved by hu-
man expert supervision. In DeepDive, human feedback
is provided through interaction from both a domain
knowledge expert and a DeepDive-trained data scien-
tist.

More recently, in order to shift away from data la-
beling dependency, Ratner et al. proposed “data pro-
gramming” [27]. Data programming aims to automat-
ically generate training data by fitting a generative
mixture model comprising a handful of weak supervi-
sion strategies or domain heuristics, denoted as labeling
functions. Experimental results show that discrimina-
tive models (Logistic Regression and Long Short-Term
Memory (LSTM) networks[28]) optimized on training
data automatically generated by these labeling func-
tions yield comparable performance to models trained
on manually labeled data. The success of data program-
ming brings hope to replace human supervision with
automated labeling functions [5]. However, this process
relies heavily on the successful setup of training data,
composition of labeling functions (which needs deep ex-
pert and domain knowledge) and statistical character-
istics of models so it is still ongoing research.

MITIE is an open-source NLP tool focused on
Named Entity Extraction (NER) and binary relation ex-
traction [22]. MITIE offers advanced machine learning
models and it achieves comparable performance with
Stanford NLP on the CoNLL 2003 NER benchmark.
MALLET (Machine Learning for LanguagE Toolkit) is
collection of open-source Java tools which provides sta-
tistical NLP models for document classification, cluster-
ing, topic modeling and information extraction [19].

MITIE and MALLET do not provide friendly
graphical user interface, and thus require extensive ef-
fort for implementation, integration, model training and
performance evaluation. Neither has a web-application
implementation or involves active learning for efficient
and interactive model training.

Other Information Extraction systems developed
earlier, such as GATE (General Architecture for Text
Engineering)[23], AI::Categorizer [30], KnowItAll [30],
ReVerb [1], TextRunner [2] and NELL [3] are all based
on pattern matching of semantic classes and rules. It
is challenging to apply these approaches to information
extraction at large scales.

3 The RoCKET Framework

RoCKET aims to solve these problems with a frame-
work that involves little intervention from NLP experts
or data scientists. Utilizing the RoCKET framework
involves the following steps:

• Concept definition and keyword selection: The
user settles on a concept they wish to extract from
the documents of interest, and then they brainstorm
a short list of keywords that are related to the concept.
RoCKET offers the ability to enrich this set of key-
words by supplementing semantically similar words.

Figure 1: The RoCKET work-flow

• Candidate generation: RoCKET queries a
database of documents and selects all documents that
contain any of the keywords obtained from the pre-
vious step. These documents are candidates for the
concept.

• Feature calculation: RoCKET embeds the docu-
ments into a vector space.

• Label acquisition: RoCKET generates a URL
which can be sent to as many users as desired. The
URL leads to an interface where users can label docu-
ments as positive or negative for the concept. Labels
are acquired until satisfactory stopping conditions are
met.

• Final model training: RoCKET uses the labels
from the previous step to train and optimize a model
which is then used to make predictions on the remain-
ing documents.

A summary of these steps is shown in Figure 1. In
the following section we describe more details about the
tools, techniques and algorithms used in each of these
steps.

3.1 Concept definition, enrichment, and
candidate generation The first step in the
RoCKET work-flow is to define the concept and
find all documents which may contain the concept.
Typically the entire corpus is very large (in our case,
hundreds of millions of documents), so it is necessary
to narrow down the possible candidate documents to
a manageable size so features can fit in memory and
algorithms can run within a practical time-frame.

Figure 2: A screenshot from the enrichment process.
The model suggests misspellings as well as semantically
similar words (e.g. other rental companies).

In the car insurance domain, one might be inter-
ested in selecting all documents that contain the concept
car rental. We define the specific concept in plain En-
glish terms, such as customer asking about a car rental,
or vehicular accident involving a rental car.

Next we initialize set of keywords C =
{c1, c2, . . . , ck} of tokens or n-grams related to concept.
For our example, this might be:

C = {car rental, rental car, enterprise, hertz}

Eventually, we will query the corpus for all documents
that contain any of these keywords. At this stage, we
are interested in maximum recall to obtain all possible
candidates, so low precision is expected.

The keywords are generally provided by a user with
some domain knowledge about the concept. However,
it is not required that this is an exhaustive list of key-
words, because RoCKET leverages a word2vec word-
embedding model [21] to suggest semantically similar
words by finding nearest neighbors of each keyword in
the embedding space. While RoCKET provides the
ability to use a pre-trained, general-purpose word2vec
model (e.g. one trained on Wikipedia articles), we see
more relevant suggestions when the model is trained on
documents within the domain of interest. These models
are more likely to suggest related domain-specific jar-
gon or misspellings commonly found in the corpus be-
ing analyzed. For example, in claims notes in the insur-
ance domain, “insured” is often abbreviated as “insd”,
and this relationship is easily discerned from examining
nearest neighbors of each word.

We call this stage concept enrichment. This stage
can be repeated as many times as the user desires un-
til a satisfactory set of keywords is obtained. Figure
2 shows a screenshot captured from this process. Fi-
nally, we query our corpus for any documents contain-
ing any of the keywords in C. Beforehand, the corpus
has been indexed using Elasticsearch [11], which pro-

vides the flexibility and scalability necessary to perform
our token-based search over hundreds of millions of doc-
uments in a practical time-frame.

3.2 Feature calculation In this step the goal is to
find a text representation that is well suited for learn-
ing models with limited labeled data. In earlier stages
of this work we experimented with different text rep-
resentations, including the widely used n-grams (bag-
of-words) and tf-idf representations [6]. However, n-
grams produces very high-dimensional representations
and “the curse of dimensionality poses even greater chal-
lenges in the case of limited data, which is precisely the
setup for active learning” [7]. We consistently achieved
better and more robust performance by taking a word-
embedding model and averaging the word vectors for a
any given document. For this paper, we call this method
“Text2Vec” and it is inspired by the experiments in [4].
The resulting dimension is thus the same size as the
word embeddings (usually 200 − 300) instead of in the
thousands.

It is important to note that the n-gram represen-
tation can be very sparse (especially if the documents
are short), and it is limited by the number of words in
the bag-of-words dictionary. In contrast, the Text2Vec
model produces dense representations that use all words
that are present in the document provided that they
have a corresponding word embedding.

3.3 Label acquisition The most difficult part of
machine learning with unstructured data (and most
machine learning problems in general) is acquiring a
sufficiently large set of representative and good quality
labels. Our goal for this step is to make this process
as easy and efficient as possible. We leverage the
crowd-sourcing/active-learning platform NEXT [13] to
implement active learning algorithms and deploy them
at the scale of many users. NEXT’s primary goal is to
test and evaluate active learning algorithms to facilitate
research at crowd-sourcing scales, and it makes it easy to
compare the performance of active learning algorithms
to baseline passive (e.g. uniform sampling) methods.

3.3.1 Active learning Active learning is a subset of
machine learning that addresses the issue of how effi-
ciently algorithms can learn by choosing which samples
in the dataset to train with. The typical setup for pool-
based active learning for classification is: an unlabeled
pool of examples U , a labeled pool L of example-label
pairs (x, yx), an oracle that can supply the label of any
x ∈ U , and a querying strategy that selects which ex-
ample in U the oracle should label based on the current
state of L. Passive learning would just sample uniformly

from U as its querying strategy. In our case, human an-
notators provide the role of the oracle. Active learning is
particularly useful when human annotation is involved,
because one can substantially reduce the cost and time
needed.

The goal of the querying strategy is to select x∗ ∈ U
such that L∗ = L ∪ {(x∗, yx∗)} yields the maximum
information gain versus L ∪ {(x, yx)} for any other x ∈
U [17]. Maximal information gain is usually defined as
maximally changing the predicted distribution towards
the true distribution, which could be quantified by
greatest decrease in risk:

x∗ = argminx∈UE
[
`(fL̂)

]
Where E

[
`(fL̂)

]
is the expected loss of the classifier

trained on the labeled set L̂ = L ∪ {(x, yx)} over
the true distribution of your samples. This has some
obvious practical limitations: we do not have the true
distribution of our samples, and we cannot look at the
label of each unlabeled example.

Instead, we might define a function µ(x) that serves
as a proxy or approximation of the information gain
yielded from obtaining yx and optimize that. For
RoCKET we implement uncertainty sampling, which is
a querying strategy where µ(x) captures the classifier’s
uncertainty about the class of x[15]. The intuition is
that not much information is gained if a classifier gets
a new label with which it already agreed with high
certainty. If your classifier outputs probabilities for each
class of an unlabeled sample, one way to define µ(x) is
the Shannon entropy of the predicted classes:

µ(x) = −
∑
c∈C

pc(x) log pc(x)

Where C are our possible classes, and pc(x) is the
probability that our classifier assigns to x having class
c. Note for binary classification (|C| = 2), µ(x) is
maximized when pc(x) = .5 for both classes. For a
linear classifier, this is equivalent to finding unlabeled
samples that lie closest to the decision hyper-plane and
can be implemented in O (|U| log |U|) time.

3.3.2 Active learning architecture NEXT pro-
vides the architecture to implement active learning al-
gorithms and scale the labeling process to as many users
as necessary. The application itself is stateless, jobs are
run asynchronously, and all variables and computations
are stored in a database or cache accessible by all in-
stances, meaning it is easy to distribute the processes
over a cluster to scale with the number of labelers.

In order to streamline the labeling experience, we
do not retrain the algorithm in real-time for every label.

Figure 3: A example labeling UI in RoCKET. For this
example, we are applying a three class classifier extract
the concepts positive sentiment, neutral sentiment, and
positive sentiment from movie reviews. Keywords from
the candidate selection step are highlighted.

Instead, we maintain a queue of unlabeled examples
chosen by the active learning algorithm. When a user is
ready to label, they are simply served the first query
in the queue and an asynchronous job is started to
refill the queue. If the queue is empty, an unlabeled
example is sampled passively (uniformly at random) so
there is no delay in the labeler experience. The queue
size is dynamically chosen based on the number of users
present, the median time to run the algorithm, and the
median response time for users. Since it is often the
case that users take longer to label an example than it
takes to run the algorithm, the queue size is usually 1,
but the queue size can be larger if there are many users.

3.3.3 Evaluation and Stopping Conditions An
important part of efficiently gathering labels is knowing
when to stop, so you may conserve labor costs or move
on to new concepts. Performance diagnostics and stop-
ping conditions are necessary to evaluate the progress of
the label acquisition and resulting model. NEXT pro-
vides the ability to build a customized dashboard for
this purpose.

To evaluate progress, we initially split the candi-
dates into train and hold-out sets. Since active learning
can heavily bias your sample pool, we uniformly sample
examples from the hold-out set to be labeled. These uni-
formly sampled examples are mixed in with the actively
chosen ones so the labeler doesn’t know which set they
are labeling. This allows us to measure prediction per-
formance against “ground truth” labels obtained from
humans.

With a labeled holdout set, the easiest and most
effective performance metric to consider is predictive
accuracy on the holdout set. Since RoCKET is usually
dealing with unbalanced sets, we use the area under the
receiver-operator-characteristic (ROC) curve, or AUC.

As another stopping condition, we also consider the
label stability between successive iterations. Borrow-
ing from inter-coder reliability techniques, we compute
Cohen’s Kappa for the predictions made by each pair of
successive classifiers as new labels are obtained. Cohen’s
Kappa is a measure of agreement between two labelers
that is effective when there is a class imbalance as is
usually the case in concept extraction. If po is the ob-
served proportion of the labels that agree and pe is the
observed portion of labels that disagree, then Cohen’s
Kappa is:

κ =
po − pe
1− pe

Note that a score of 1 means there was perfect agree-
ment. The motivation for using an agreement metric as
a stopping condition is clear: if our newest classifier’s
predictions on a hold-out set match the predictions of
the previous classifier, then the new labels did not pro-
vide any new information. [8] show that a high Cohen’s
Kappa between two classifiers implies a low difference
in F-scores, meaning the performance of your classifier
is not improving.

This stopping condition is much more valuable
than the measuring holdout performance because it is
unsupervised; no labels are required, so all annotation
can be focused on the training set.

3.4 Final model training Once satisfactory stop-
ping conditions are met, we use standard tuning and
validation practices to produce a final model. Since
we don’t end up with a large quantity of labeled data,
we use classifiers with limited expressive power in or-
der to avoid over-fitting. Our final models are linear
classifiers: SVMs [9], logistic regression [12] or proximal
(least-squares) SVMs [10]. We use Python’s scikit-learn
library [25] and Pyspark’s MLlib library [20] for model
training and implementation.

4 Experiment I: Simulations

To evaluate the performance of RoCKET on realistic
data, first we simulate active learning experiments us-
ing open source datasets. Throughout this section, we
use the Stanford Large Movie Review Dataset [16], 20
Newsgroups [14], and Rotten Tomatoes sentence polar-
ity dataset [24]. For the 20 Newsgroups scenarios, we
set up the problem as a “one-vs-all” classification prob-
lem, where the goal was to classify each document as
positive or negative for certain categories (e.g. base-
ball or autos). Note that this creates very unbalanced
datasets (the positive class is 1/20th the size of the neg-
ative class). However, this accurately reflects real-world
scenarios, where certain concepts in claims notes can be
very rare. To simulate this rareness for the balanced

Figure 4: Performance of tf-idf bag-of-words and
Text2Vec features on the Rotten Tomatoes dataset.

datasets, we only used a small sample from the positive
classes.

In general, we are interested in measuring perfor-
mance against the number of training labels. Our claims
are about getting more performance with fewer labels.
So to demonstrate our claims, we plot performance met-
rics against the number of training labels: a steeper
curve indicates better performance. Since there is a lot
of randomness involved in these experiments, we’ve run
each of the simulations 10 times and averaged out the
results to smooth the curves.

4.1 Bag-of-Words vs. Text2Vec In Section 3.2 we
proposed a word2vec-based model (“Text2Vec”), since
the representations are dense and lower dimensional.
We claim that this means the features perform bet-
ter, especially when labeled examples are limited. In
Figure 4 we show the performance (AUC) of Text2Vec
and tf-idf bag-of-words features on a holdout set versus
the number of training labels. Since we are interested
in showing the effectiveness of the features themselves,
both curves are generated using passively learned train-
ing examples. The Text2Vec curve dominates the tf-idf
curve even though their final max scores (i.e. with all
the training labels) are similar, indicating the dense fea-
tures achieve better performance with fewer labels. For
all of the remaining analyses, we use the Text2Vec fea-
tures.

4.2 Active learning Most importantly, we show
that our implementation of active learning is more
efficient than baseline passive learning given the
RoCKET architecture. We simulated active learning
and passive learning on all of our datasets. The results
are shown in Figure 5.

4.3 Stopping condition: Cohen’s Kappa Here
we demonstrate the significance of using a label agree-

Figure 5: Active and passive learning performance on
various datasets: 20 Newsgroups (autos), 20 News-
groups (baseball), Rotten Tomatoes, and Stanford
IMDB.

Figure 6: Active learning performance vs. label stabil-
ity/prediction agreement (Cohen’s Kappa) on the Rot-
ten Tomatoes dataset.

ment technique to determine convergence. In Figure 6,
we plot the holdout set AUC and Cohen’s Kappa versus
the number of training examples. We see that Cohen’s
Kappa approaches its max (1.0) at the same time that
the performance of the classifier stabilizes.

5 Experiment II: Using RoCKET for the
insurance industry

In insurance, like in many industries, data collection
is process-driven. Legacy data collection systems are
built around a specific process and only persist struc-
tured data centered around that process. However,
the industry and processes are constantly changing and
structured data quickly becomes outdated and irrele-
vant. Thus, there is an increasing need for approaches
that extract information from sources that contain un-
structured data and can adapt to these changes. In
this section we present several cases where we applied
RoCKET to extract information from raw, unstruc-
tured text for analytical purposes.

5.1 Concept extraction from adjuster notes In
order for an insurance policy holder to get reimbursed
for a loss or incident, a claim is filed with the corre-
sponding insurance company. The claim process usually
consists of a series of interactions between the insurance
company and the insured and other involved parties.
With every interaction, information, mostly in the form
of unstructured notes, is gathered by adjusters working
on the claim case. We applied RoCKET to extract
the following concepts from a corpus of 160 million ad-
justers’ notes:

1. Communication: If there was a documented com-
munication with the insured. This includes phone
calls, emails, or any contact via chat.

2. Failed contact: If there was a documented failed
communication attempt from the company to the
insured or party involved in the claim.

3. Physical damage: If when the claim was reported
the first time, physical damage to any vehicles involved
was reported.

4. Detrimental weather: If bad weather played an
important role in the loss (e.g. hail storm in a roof
claim, heavy rain or snow during a car accident, etc.).

For this deployment of RoCKET, we trained a
word2vec model using the claims notes to be used for
concept enrichment and feature generation. As men-
tioned in Section 3, the domain-specific model is ex-
tremely useful for the concept enrichment step because
it suggests misspellings and semantically similar words
found in the same corpus.

We worked with adjusters to determine and define
a useful set of concepts to extract and set of keywords
to use. The candidate generation step yielded between
10,000 and 50,000 notes, depending on the concept.
Next, a joint team comprising both adjusters and data
scientists used the NEXT interface described in Section
3.3 to label notes for each concept until satisfactory
stopping conditions were met. Finally, we used the
models to assign a score to all the notes in the corpus
for each concept. The score indicates the probability
that each concept occurs in the particular note. These
scores are stored in a structured table to be used
later for predictive models and other advanced analytics
projects.

Figure 7 show the AUCs for the four concepts
described above for both the training and the holdout
test set.

5.2 Sentiment analysis for article comments A
company internal website is an important vehicle to fa-
cilitate internal communication and collaboration. Of-
ten, these internal websites have options for employees
to leave comments on published articles. It would be
valuable to Human Resources (HR) to analyze these
comments to track and measure employee engagement.
We tested an open source pre-trained sentiment analy-
sis model from the CoreNLP library [18] but the results
were not satisfactory.

We deployed RoCKET to obtain labels for com-
ments from 10 members of the communications team
that is in charge of publishing articles on the internal
company website. We collected labels for approximately
2000 comments to be used for training and testing our
models. Additionally, for a disjoint set of 250 comments
we obtained labels from each of 4 labelers to be used as

Figure 7: Training and holdout AUCs for the four
concepts extracted from adjuster notes

L1 L2 L3 L4 ST RK
L1 1 0.86 0.81 0.86 0.35 0.69
L2 0.86 1 0.82 0.82 0.36 0.654
L3 0.81 0.82 1 0.84 0.38 0.70
L4 0.86 0.82 0.84 1 0.38 0.71
ST 0.35 0.35 0.38 0.38 1 0.44
RK 0.69 0.65 0.70 0.71 0.44 1

Table 1: Spearman’s rank correlation between each
labeler, the Stanford model and RoCKET (RK).
Li, (i = 1, . . . , 4) denote the labelers and ST is the
Stanford model.

a special testing set for this project. By obtaining labels
from 4 different labelers, we were able to perform a more
in-depth analysis of the model performance by examin-
ing inter-labeler agreement. The comments were labeled
in as negative, positive and neutral, and we trained a
one-vs-all classifier. The average test set AUC was 0.90.

In order to further assess performance of the model
we calculated Spearman’s rank correlations between
each labeler, the Stanford sentiment model and the
model produced by RoCKET over the 250 testing
comments. Results are summarized in Table 1. The
RoCKET model performs close to the human label-
ers and significantly outperforms the generic Stanford
sentiment model.

6 Conclusions

We have designed and deployed a platform that is
providing significant value to our company. In addition
to the use-cases we show in this paper, we have used
RoCKET on other company projects, including an
ongoing one where we are extracting information from
customers calls to automatically fill fields of a call
summary form. We are pleasantly surprised by the level
of engagement we have had from our business partners
on NLP-related projects where they get involved by
labeling text through the NEXT web-service. We are
constantly improving the framework and learning as
we apply it to more projects. We have many ideas to
improve our framework which we will discuss in more
detail in the next section.

7 Future Work

We are currently researching more sophisti-
cated approaches to almost every aspect of the
RoCKET framework. In this section we present a
summary of some ongoing research projects.

Right now, the framework uses only one set of
features. In the future, we will implement the abil-
ity to choose any number of sets of features and have
RoCKET optimally select the best performing fea-
tures. Motivated by the success of recurrent neural net-
works (RNNs) in sequence labeling and sequence predic-
tion tasks, we are exploring using deep neural networks,
RNNs and LSTMs to build richer text representations
that have the potential to extract more nuanced infor-
mation from large bodies of text. We are also interested
in applying these models for the final model training.

However, applying these approaches to our frame-
work is difficult given they generally require large
amounts of labeled data to perform well. We are explor-
ing applying the “data programming” approach and us-
ing weak supervision in the form of user-provided label-
ing functions combines with the active learning frame-
work to create the large labeled datasets necessary for
training more complicated models. We also are exper-
imenting with leveraging the vast amount of unlabeled
data in our datasets using semi-supervised approaches
described in [26]. We are also researching improvements
to the active learning algorithms and architecture to im-
prove that process. One consequence of the queue-based
approach described in Section 3.3.2 when many labelers
are involved is that the queue can get filled with many
similar examples (e.g. if there was a cluster of simi-
lar examples near the decision boundary), leading to a
suboptimal active learning sequence. We are exploring
different algorithms that incorporate a “diversity crite-
rion” to ensure the queue gets filled with uncertain and
diverse examples. Another consequence of having mul-

tiple labelers is that there is sometimes disagreement
between labelers, especially when labelers have differ-
ent levels of expertise. This scenario was considered in
[31], where more complicated active learning algorithms
learn different models for each labeler in order to select
the best example for each individual users based on their
responses so far.

References

[1] Reverb: Open information extraction software, 2003.
[2] Open information extraction: Text runner, 2007.
[3] Nell (never-ending language learner), 2010.
[4] S. Arora and Y. Liang. A simple but tough-to-beat

baseline for sentence embeddings. In International
Conference on Learning Representations (ICLR) 2017,
2017, to appear.

[5] J. Attenberg and F. Provost. Inactive learning?: Diffi-
culties employing active learning in practice. SIGKDD
Explor. Newsl., 12(2):36–41, Mar. 2011.

[6] R. Baeza-Yates and B. Ribeiro-Neto. Modern Infor-
mation Retrieval. ACM Press, New York, NY, 1999.

[7] M. Bilgic. Combining active learning and dynamic di-
mensionality reduction. In SIAM International Con-
ference on Data Mining (SDM), 2012.

[8] M. Bloodgood and J. Grothendieck. Analysis of stop-
ping active learning based on stabilizing predictions.
In CoNLL, 2013.

[9] C. J. C. Burges. A tutorial on support vector machines
for pattern recognition. Data Min. Knowl. Discov.,
2(2):121–167, June 1998.

[10] G. Fung and O. L. Mangasarian. Proximal support vec-
tor machine classifiers. In Proceedings of the Seventh
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’01, pages 77–
86, New York, NY, USA, 2001. ACM.

[11] C. Gormley and Z. Tong. Elasticsearch: The Definitive
Guide. O’Reilly Media, Inc., 1st edition, 2015.

[12] D. W. Hosmer and S. Lemeshow. Applied logistic
regression (Wiley Series in probability and statistics).
Wiley-Interscience Publication, 2 edition, 2000.

[13] K. G. Jamieson, L. Jain, C. Fernandez, N. J. Glattard,
and R. Nowak. Next: A system for real-world devel-
opment, evaluation, and application of active learning.
In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 28, pages 2656–2664. Curran
Associates, Inc., 2015.

[14] K. Lang. Newsweeder: Learning to filter netnews. In
Proceedings of the Twelfth International Conference on
Machine Learning, pages 331–339, 1995.

[15] D. D. Lewis and W. A. Gale. A sequential algorithm
for training text classifiers. In SIGIR ’94, pages 3–12.
Springer-Verlag, 1994.

[16] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y.
Ng, and C. Potts. Learning word vectors for sentiment
analysis. In Proceedings of the 49th Annual Meeting of

the Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland, Ore-
gon, USA, June 2011. Association for Computational
Linguistics.

[17] D. J. C. MacKay. Information-based objective func-
tions for active data selection. Neural Comput.,
4(4):590–604, July 1992.

[18] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel,
S. Bethard, and D. McClosky. The stanford corenlp
natural language processing toolkit. In Proceedings
of the 52nd Annual Meeting of the Association for
Computational Linguistics, ACL 2014, June 22-27,
2014, Baltimore, MD, USA, System Demonstrations,
pages 55–60, 2014.

[19] A. K. McCallum. MALLET: A Machine Learning for
Language Toolkit. http://mallet.cs.umass.edu, 2002.

[20] X. Meng, J. K. Bradley, B. Yavuz, E. R. Sparks,
S. Venkataraman, D. Liu, J. Freeman, D. B. Tsai,
M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin,
R. Zadeh, M. Zaharia, and A. Talwalkar. Mllib: Ma-
chine learning in apache spark. CoRR, abs/1505.06807,
2015.

[21] T. Mikolov, K. Chen, G. Corrado, and J. Dean.
Efficient estimation of word representations in vector
space. CoRR, abs/1301.3781, 2013.

[22] MIT. Mitie: library and tools for information extrac-
tion, 2016.

[23] T. U. of Sheffield. Gate: General architecture for text
mining, 1995.

[24] B. Pang and L. Lee. Seeing stars: Exploiting class
relationships for sentiment categorization with respect
to rating scales. In Proceedings of the ACL, 2005.

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12:2825–2830, 2011.

[26] A. Rasmus, H. Valpola, M. Honkala, M. Berglund,
and T. Raiko. Semi-supervised learning with ladder
network. CoRR, abs/1507.02672, 2015.

[27] A. J. Ratner, C. D. Sa, S. Wu, D. Selsam, and
C. Ré. Data programming: Creating large training
sets, quickly. In Advances in Neural Information
Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December 5-10,
2016, Barcelona, Spain, pages 3567–3575, 2016.

[28] H. Sak, A. Senior, and F. Beaufays. Long short-
term memory recurrent neural network architectures
for large scale acoustic modeling. In INTERSPEECH,
pages 338–342, 2014.

[29] M. Wall. Big data: Are you ready for blast-off. BBC
Business News, 2014.

[30] K. Williams. Ai::categorizer - automatic text catego-
rization, 2003.

[31] Y. Yan, R. Rosales, G. Fung, and J. G. Dy. Active
learning from crowds. In L. Getoor and T. Scheffer,
editors, ICML, pages 1161–1168. Omnipress, 2011.

[32] C. Zhang. DeepDive: A Data Management System for
Automatic Knowledge Base Construction. PhD thesis,
Stanford University, 2015.

