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Introduction Experiments Conclusions
Given a finite metric space X, denote the similarity matrix by The magnitude of a metric space has a slogan of giving the
Cx(z,y) = e~ 4@y “number of effective points” in the space. We give definitions
The magnitude of X is defined to be Convex Hulls Clustering of the power of a poir}t, and power of an edge that can give
X = Z C}—(l (z,y) | o - more formalism to this slogan.
o By ranking the points in The e-power of an edge can be seen as a similarity measure
For ¢ € (0,00) define the metric space tX to have distance s S o Sipesad Font X by their power we between points. We can convert this to a distance measure The power of a point allowg us to order the points %n X defmed
given by the distance of X scaled by t. We then study |¢ X| ooy A generate candidates for by by an 1n.tr1n51.c measure. This leads to a number of interesting
’ " the convex hull of X. D. (gj’ y) g ln( E. (x, y)) applications, including
| Rt YL Each data set in these » Convex hull computation
. - TTet o, trials contains 200 * Clustering methods
e } N T 8 points. Once we have this, we can formulate clu§ter1ng methods in a + Persistent homology computation
Gor T e ) number of ways. We show here a clustering based on the . . . .
AR . . * Choosing candidates for active learning
R I HDBSCAN algorithm. . . .
Tt * Supervised machine learning
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Behavior of points in R . :
The magnitude of a (finite) metric space is thought of as the ‘ :

number of “effective points” in X. For any finite metric space, h S v o . L SR 0
it is known that lim |tX| = #X It may not be the case that ' o '
't X | is well-defined for all t. However, we have the following.

Theorem [Leinster & Meckes] If X C R" finite, then [tX| is

defined for all ¢ € (0,00) Persistent Homology

This allows us to define the power of a point x € X as By using the point power of a dataset X we can formulate a downsampling technique as follows. If we wish to downsample X to 60% Torus colored by point power
0o resolution, choose the points whose power is in the 60 percentile across all the point powers in X.
. —t —1
poim [ Y Gl @y
L yeX We compare this method to a random downsampling technique and compare how well the persistent homology approximates that of the

full resolution data set. To do this, the bottleneck distance between the persistence diagram of the downsampled data set and the persistence

Similarly, we can define the e-power of an edge between diagram of the full resolution data set is computed.

points =,y € X to be

E.(z,y) := / o (Kt_X1 (z,y)| > € dt For each downsample rate, 10 trials were performed and the bottleneck distance shown is the average across trials.
1 t2
Downsample | Bottleneck | Bottleneck

~..“ ,,: .:“ f;:.. | sa o, 025 rate (%) distance distance
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J‘ r noisy cirele. . b4 - N 10 0.693 0.693
"’ “*: . : N 20 0.693 0.693
K 1 :e,«f;w," | g .‘: ¢ fos 30 0.693 0.670
) A K A P 40 0.670 0.475
R 50 0.236 0.382
4 60 0.208 0.284
3 Edge between two points if 70 0-137 0-318

| | power of edge is greater than a 80 0.078 0-115 For further information

N | fixed constant. 90 0.047 0.036
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